Brake System (WABCO ABS)

General

Description	BR	-3
Components	BR	-14
Dignosis	BR	-16
On-Vehicle Inspection And Adjustment	BR	-20
Specifications	BR	-22

Vacuum Assisted Hydraulic Brake

Brake Pedal		
Components	BR	-27
Removal	BR	-28
Installation	BR	-28
Adjustment	BR	-28
Brake Booster		
Component	BR	-30
Removal	BR	-31
Installation	BR	-32
Inspection	BR	-33
Brake Master Cylinder		
Components	BR	-36
Removal	BR	-37
Installation	BR	-38
Load Sensing Proportioning Valve(LSPV)		
Components	BR	-39
Removal	BR	-40
Inspection	BR	-40

Front Brake Assembly

Disc Brake Components......BR -41 Removal......BR -42

Removal Installation Disassembly	BR BR BR	-42 -43 -44
Reassembly	BR	-45
Inspection	BK	-46
Components	RR	-//8
Removal	BR	-49
Replacement	BR	-50
Installation	BR	-51

Parking Brake System

Components	BR	-52
Removal	BR	-53
Installation	BR	-54
Adjustment	BR	-56

Rear Brake Assembly

Drum Brake	
Components	. BR -57
Removal	BR -58
Replacement	. BR -59
Installation	BR -61
Exhaust Brake	
Component Location	. BR -62
Components	. BR -63
Replacement	. BR -67
Disassembly	. BR -68
Reassembly	. BR -68
Inspection	. BR -70

ABS(Anti-Lock Brake System)

Specifications	BR	-72
Description	BR	-72
Using Blink Code Diagnostics	BR	-76
DTC Troubleshooting	BR	-83
Repair Instruction	BR	-88
Connector Configurations	BR	-90
Full Circuit Diagram	BR	-91
Inspection	BR	-91
Adjustment	BR	-92
ABS Modulator		
Removal	BR	-94
Installation	BR	-94
Wheel Speed Sensor		
Description	BR	-95
Replacement	BR	-95
ABS Control Module		
Removal	BR	-97
Installation	BR	-98
Schematic Diagrams	BR	-99
DTC Chart	BR	-104
0000	BR	-107
0001	BR	-110
0002	BR	-113
0003	BR	-116
0004	BR	-119
0009	BR	-122
000A	BR	-125
000B	BR	-128
000C	BR	-131
000D	BR	-134
000E	BR	-137

000F	BR	-140
0010	BR	-143
0011	BR	-146
0017	BR	-149
0018	BR	-152
0019	BR	-155
001A	BR	-158
001B	BR	-161
001C	BR	-164
001D	BR	-167
001E	BR	-170
001F	BR	-173
0020	BR	-176
0021	BR	-179
0022	BR	-182
0023	BR	-185
0024	BR	-188
0029	BR	-191
002A	BR	-194
002B	BR	-197
002C	BR	-200
002D	BR	-203
002E	BR	-206
002F	BR	-209
0030	BR	-212
0032	BR	-215
0033	BR	-218
0037	BR	-221
0038	BR	-223
0039	BR	-225
003B	BR	-227
003C	BR	-230

003D	BR	-233
003F	BR	-235
0040	BR	-237
0041	BR	-240
0042	BR	-243
0043	BR	-246
0044	BR	-249
0045	BR	-252
0046	BR	-255
0047	BR	-257
0049	BR	-260
004A	BR	-263
004B	BR	-266
004C	BR	-269
004D	BR	-272
004E	BR	-275
004F	BR	-278
0050	BR	-281
0051	BR	-284
0052	BR	-287
0053	BR	-290
0054	BR	-293
0055	BR	-296
0056	BR	-299
0057	BR	-302
0058	BR	-305
0059	BR	-308
005A	BR	-311
005B	BR	-314
005C	BR	-317
005D	BR	-320

General DESCRIPTION BRAKE SYSTEM

The service brakes are internally expanding type hydraulic brakes acting on all wheels. The brakes for the front wheels are 2-leading type and those for the rear wheels are duo-servo or dual 2-leading type.

The brake booster gives faster hydraulic pressure buildup. Tandem type brake master cylinder also contributes to safety. The brake pedal, which is easy-to-operate pendant type, transmits depression force via operating rod, etc. to the BRAKE BOOSTER, which boosts it and drives the master cylinder.

The BRAKE BOOSTER vacuum line is equipped with a vacuum tank which minimizes negative pressure change even in the case of repeated and frequent braking operation.

Brake Booster

1. When not in Operation

When not in operation, no force acts on the operating rod and hence the valve plunger is seated on the poppet to open the negative pressure valve and to close the atmospheric valve.

Negative pressure generated by the engine draws out air from the chamber on the left side of the diaphragm plate. And as the chamber on the right side of the diaphragm plate is also evacuated via the vacuum channel and the negative pressure valve that is opened. As a result, the diaphragm plate is pressed tightly onto the rear shell surface by the diaphragm plate return spring. Atmosphere goes through the air filter into space around the operating rod but does not flow further as the atmospheric valve of the valve plunger is closed.

2. When in Operation

When the brake pedal depression force overcomes the valve return spring force, the operating rod, valve plunger and poppet now move to the left and the poppet is pressed tightly onto the valve plunger seat by the poppet spring, closing the negative pressure valve. When the brake pedal is further depressed following closure of this valve, the valve plunger clears the poppet to open the atmospheric valve and atmosphere now flows through the channel into the chamber on the right side of the diaphragm.

This flow of atmosphere produces the pressure difference across the diaphragm and the force resulting from such pressure difference overcomes the piston return spring force. As a result, the diaphragm pushes the push rod as it moves from right to left. The push rod thus pushes the master cylinder piston, generating high fluid pressure from low pedal depression force.

SUDBR9016L

Brake Master Cylinder

1. Normal Operation

The tandem type brake master cylinder has independent hydraulic systems for front and rear brakes.

Should one of the two hydraulic systems fail, braking by survived system (front or rear wheels) ensures safety. When the brake pedal is depressed, the primary piston is pushed to left, developing hydraulic pressure in the pressure chamber on the primary side. This pressure directly acts on the secondary piston to push the secondary piston to left, developing hydraulic pressure also in the pressure chamber on the secondary side. As a result, each piston pressurizes brake fluid to generate hydraulic pressure in both front and rear brake systems.

SUDBR9017L

2. When fluid leaks are caused in front brake system

In this case, depression of the brake pedal to push the push rod does not develop hydraulic pressure as the brake fluid leaks from the front brake system. Therefore, the primary piston compresses the primary return spring and the retainer pushes the secondary piston, which then pressurizes brake fluid in space between the secondary piston and cylinder body, thus generating hydraulic pressure in the rear brake system only.

SUDBR9018L

3. When fluid leaks are caused in rear brake system

In this case, when the brake pedal is depressed to push out the push rod, the secondary piston end comes into contact with the cylinder body since brake fluid in the rear brake system leaks. When the push rod is further pushed, the primary piston pressurizes brake fluid in the space between the primary and secondary pistons, generating hydraulic pressure in the front brake system only.

Front And Rear Wheel Brakes Front wheel Brakes

The wheel cylinder is so constructed that the piston extends in one direction only to push the shoes which are held down to the backing plate by the shoe hold down pin. The return springs mounted on the shoe fixed and moving sides cause contraction of the shoe and wheel cylinder piston when the brake is released.

When the vehicle is running forward, both shoes work as leading shoes.

EMTBR5004A

When the pedal is depressed, brake fluid supplied under pressure from the master cylinder enters the wheel cylinder, of which piston moves the shoe moving side so that the lining is pressed against the drum inside. Resultant friction between the lining and drum causes the shoe to try to turn with the drum, thus boosting the braking force.

EMTBR5005A

Rear Wheel Brake Dual 2-leading Brake

The wheel cylinders are installed at front and rear and the pistons extend in both upward and downward directions to push the shoes from both directions. The shoes are held down to the backing plate by shoe hold down pins and the return springs mounted on the shoes causing contraction of the shoe and wheel cylinder piston when the brake is released. During both forward and reverse operation of the vehicle, the shoes work as leading shoes.

EMTBR5004A

When the pedal is depressed, brake fluid supplied under pressure from the master cylinder enters the wheel cylinder, of which piston causes the shoe to expand in both directions to press the lining against the drum inside. Resultant friction between the lining and drum causes the shoe to try to turn with the drum, thus boosting the braking force.

EMTBR5006A

Wheel Cylinder

The wheel cylinder driven by hydraulic pressure generated by the brake master cylinder presses the shoe (lining) against the brake drum.

There are following two types of wheel cylinder according to the method of pushing the shoe.

EMTBR5007A

1. 2-leading type : Front brake

In pedaling brake, oil pressure rising is master cylinder goes into wheel cylinder and pushes piston. Shoe contacting with the end of piston sticks to brake drum and generates frictional force.

EMTBR5008A

2. Dual 2-leading type : rear brake

EMTBR5009A

Brake Fluid Level Sensor

The brake fluid level sensor installed in the brake fluid tank senses the brake fluid level in the tank. When the fluid level drops to a preset level, the sensor operates to turn on the warning lamp in the cluster to warn low brake fluid level.

EMTBR5010A

Exhaust Brake

SUDBRA015L

The exhaust brake system, as an assistant function of the service brake, comprises of the exhaust brake device installed at the middle portion of the exhaust pipe and the intake shutter installed at the intake manipulate to reduce the intake air noise.

When the exhaust brake device close the butterfly valve, the pressure inside of the pipe increases. This increased pressure influences to the piston to get the braking force. At that time, the intake shutter is also closed. When the clutch pedal, the accelerator pedal or the exhaust brake switch is released, the electric circuit is OFF and the exhaust brake is released.

The exhaust brake is the vacuum type assistant device which uses the negative pressure.

BR-8

Intake Shutter

When the exhaust brake is operating, the intake shutter(A) reduces the amount of the intake air through the intake manipulate so as that the exhaust pressure is operated to the piston effectively. As a result, the noise will be reduced and the brake will be more effective.

KMTBR5513A

Exhaust Brake Unit

1. At Working

If the exhaust brake switch is ON, the three-way magnetic valve is opened. The vacuum pressure of the vacuum tank is applied to the exhaust brake unit so as to pull the piston.

As a result, the butterfly valve linked to the push rod is closed so that the exhaust brake is working.

EMTBR5012A

2. At releasing

If the exhaust brake switch, the clutch switch and the accelerator switch are OFF, the 3-way magnetic valve closes the circuit to the vacuum tank and opens the atmosphere circuit.

Therefore, the atmospheric pressure is applied to the exhaust brake unit. Due to the spring tension, the butterfly valve is opened. The exhaust brake is released.

EMTBR5013A

The 3-way Magnetic Valve

1. At working

If the exhaust brake switch is ON, an electric current will flow through the coil and then a magnetic field is formed. The magnetic force pulls the plunge to upward. At that time, the valve seat at the plunger closes the way to the atmosphere pressure while it opens the way linking the vacuum tank and the brake chamber.

EMTBR5014A

2. At releasing

If the exhaust brake switch is OFF, the electric current flowing through the coil is shut down. Due to the spring tension, the plunger will be pushed so as to close the way to vacuum tank while the way to the atmosphere pressure and the brake chamber.

EMTBR5060A

LOAD SENSING PROPORTIONING VALVE

- 1. LSPV assembly
- 2. Bleeder screw
- 3. Bracket

- 4. Lever assembly
- 5. Sensor spring
- 6. Spring guide

- 7. Adjusting nut
- 8. Operating lever
- 9. Connecting link assembly

Construction

LSPV is consist of sensor part and pressure controller part.

1. Sensor part

It consists of spring, operating lever, link. It senses the height of vehicle with varying according to the amount loads

2. Pressure controller part

It consists of valve stem mechanism for proportioning control of sensor force.

EMTBR5016A

Operating Principle

LSPV body is mounted in the frame and the end of the link is mounted in the rear axle. With varying of amount of vehicle load changes the relative position of frame and rear axle, so sensor spring force varies to the valve stem. It controls the rear axle brake fluid pressure.

1. Unloaded status

The sensor spring presses the valve stem slightly, so the brake fluid pressure is set weakly.

2. Loaded status

The sensor spring presses the valve stem strongly, so the brake fluid pressure is set highly.

MOTICE

Don't loose or don't retighten the adjusting nut crimping.

SUDBR9036L

Service and Inspection of the LSPV

Check the LSPV as below when replace the sensor spring, valve body assembly or reinstall the rear axle, rear spring.

Symptom	Probable Cause	Remedy
Braking force is i- nsufficient.	Insufficient air bl- eeding	Air bleeding
	Maladjusted sen- sor spring	Readjust
	Sensor spring br- oken	Replace valve a- ssembly
	Oil leakage in the brake fluid line or LSPV assembly	Tighten brake flu- id line or replace LSPV assembly
Rear brake is loc- k too fast.	Maladjusted sen- sor spring	Readjust
	Inner fault the L-SPV	Replace LSPV a- ssembly

PARKING BRAKE GENERAL

1. Parking brake lever assembly

- 2. Cam lever
- 3. Parking brake drum
- 4. Adjusting nut
- 5. Parking brake cable

The parking brake installed behind the transmission is an internal expansion type acting on the propeller shaft.

It controls propeller shaft rotation to work as a parking brake.

The control is wire mechanical type; brake shoes are pressed via a wire to control the propeller shaft.

SUDBRA022L

BR-13

Parking Brake Proper

When the lever at the driver's seat is pulled, the cam lever is actuated via a wire cable and resultant cam rotation causes the brake shoes to expand and be forced against the brake drum. The braking force is thus obtained by friction between the shoes and drum. When the lever is released, the cam lever returns to the initial position and the braking force is released by the brake shoe return springs.

EMTBR5019A

COMPONENTS(LHD)

- 1. Vacuum tank
- 2. Vacuum hose
- 3. Brake booster
- 4. Master cylinder
- 5. Reservoir tank
- 6. A.B.S modulator

COMPONENTS(RHD)

SUDBRA002L

- 1. Brake booster
- 2. Master cylinder
- 3. Brake pedal
- 4. Parking brake lever
- 5. Vacuum tank
- 6. Exhaust brake
- 7. ABS HECU(Hydraulic Electrical Control Unit)

Diagnosis

Symptom	Causes	Remedy	Remark
Irregular Braking	The air pressures of tire are different.	Adjust the air pressure of tire.	
Force	The sizes of the right and left tires are different	Replace the tire.	
	The adjustment of the wheel bearing is defective.	Adjust (Check the wheel bearing)	
	The sizes of the right and left wheel bases are different.	Check and adjust the loosening the U-b- olt or damages on center bolt.	
	The wheel alignment is defective.	Adjust	
After releasing t- he brake pedal,	The vertical surface of the back plate is rough.	Replace the back plate or check the lini- ng.	
the braking force is release too la- te.	The operation of the wheel cylinder is defective .	Check the contacting, the piston cup and wearing status. If needed, replace it. Check the lining.	
	The return spring is damaged.	Replace the spring.	
Unbalance at th- e right and left braking force	The surface of the lining is contaminated by the oil, grease or water.	If it is contaminated by oil or grease, the- n replace it. If it is contaminated by water , dry it.	
	The lining is defective or The material of lining is improper.	Replace or adjust.	
	The wear is irregular. The surface is rough.	Replace the lining. Check the inside of t- he drum, if needed, replace it.	
	The lining contact is defective.	Adjust the lining with being installed.	
	The brake drum is worn irregularly.	Adjust or replace it.	
Unstable brakin-	The brake drum is deformed.	Replace	
g force	The back plate is deformed or loosened. The vertical surface of it is rough.	If it is loosened, tighten with specified to- rque. Otherwise, replace it.	
Improper Lock Point	The drum is worn.	Adjust or Replace	Drum limit STD : Dia+2m- m
	The lining is worn irregularly.	Adjust	
	The lining contact is defective.	Adjust with being installed. (Temperature of lining should be less th- an 100°C)	

Symptom	Cau	ISES	Remedy	Remark
Low Braking Fo- rce	• The clearance between the brake pedal and fl- oor is 45mm or more. (at Pressure-600mmHg, Pressure 50kg)		Refer to the item for decreasing the clea- rance between the brake pedal and floor.	
	The lining contact is det	fective.	Adjust with being installed not being dis- assembled. (Temperature should be 100 °C or less)	
	The surface of the lining e oil, grease or water. The lining is deteriorate	g is contaminated by th- d.	If it is contaminated by oil or grease, the- n replace it. If it is contaminated by water , dry it.	
	The vacuum force is too low.		Replace the lining.	
	The drum surface is rough.		Check the pipe or the vacuum pump. If needed, replace.	
	The brake booster is defective.		Adjust or Replace	
	The brake oil level is too low.		Adjust or Replace	
The clearance b-	The air intrudes.		Refill	
etween the ped- al and the floor i- s too narrow.	Vapor lock		Air Exhausting	
	The adjustment on pedal is defective. The clearance is too large.		Referring to the brake drawn item, adjust or replace. And then exhaust the air.	
	The shoe clearance is too large.		Adjust the pedal clearance. Check the t- otal stroke.	
	The cup of the master cylinder is defective.		Adjust the shoe clearance. If the wear exceeds the limit, replace.	
	The brake shoe is defor	med or damaged.	If the tightening does not satisfy the spe- cifications, replace the kit.	
	The brake booster is defective.		Replace	
	When the wheel is rotating with being lifted by jack, there are some noises.		Replace	
During braking, the noise and s-	During braking (at low speed), noise is made	Foreign materials in d- rum	Check that the brake is damaged. Remo- ve the foreign materials.	
hock are made abnormally.	continually.	Return spring is dama- ged.	Check that the parts are damaged by br- oken parts. If needed, replace.	
		Hold down cup is dam- aged.	Check that the parts are damaged by br- oken parts. If needed, replace.	
	The grease is deficien- cy in sliding parts.	Improper adjustment on wheel bearing	Check the rotating surface. Adjust	
	The lining is worn.		Replace	
	The drum inside surface is rough.		Apply the grease.	
	The drum is cracked.		Modify the inner surface with sand paper	-
			Replace	1

BR-18

Brake System

Symptom	Causes		Remedy	Remark
The drum is ove- rheated.	The outlet of the brake ged.	master cylinder is clog-	If the booster operating rod is not proper- ly adjusted, adjust the pedal clearance of the rod clevis to 10~15mm.	
	The brake does not retu	urn.	Check the burst of the return spring, the bearing lubricant, the stop lamp switch a-djustment. If needed, adjust.	
	The booster is defective	Э.	Replace	
	The vertical surface of hed.	the back plate is scratc-	If the surface is too rough, replace. If it is too dry, apply the grease.	
	The wheel cylinder pisto	on cup is defective.	Replace	
	The oil return has probl ht of the brake pipe nut	ems due to the over tig-	Check the connector hole diameter. If it is reduced, replace.	
	When the wheel is rot- ating with being lifted	The wheel bearing cle- arance is too large.	Replace bearing or adjust.	Specific wheel is o-
	by jack, the wheel is h- ard to rotate.	Shoe clearance is imp- roper.	Adjust	verheated.
		Return spring is defec- tive.	Check the part damages due to the spri- ng over working. If needed replace.	
		Brake shoe is worn.	Replace	
The pedal retur- ning is defective.	The pedal linkage is rusted or deformed.		Disassemble. Adjust or replace. Oil the grease.	
	It is bursting due to the defectives on the pedal return spring.		Replace	
	The booster operating rod is pushed.		Adjust the pedal clearance with $10\sim15$ mm.	
Brake is vibratin-	The drum is eccentrical	ly centered.	Replace	
g.	The drum is deformed.		Replace	
	The king pin bushing is worn.		Replace the bushing	
	The hub bearing is worn.		Adjust (Check the rolling surface) or replace.	
Brake is drawn.	The pedal clearance is	too narrow.	Adjust the booster working rod.	
	The shoe clearance is improper.		Adjust	
	The back plate vertical	surface is rough.	Replace the back plate.	
	The shoe spring is burs	t.	Replace	
	The master cylinder or wheel cylinder piston c- up is deteriorated and swelled.		Replace	

Symptom	Causes	Remedy	Remark
Brake makes n- oises.	Brake shoe contacting is defective.	Adjust the lining with being installed not being disassembled (Temperature shoul- d be 100°C or less)	
	Lining is deformed.	Replace the lining. Replace the drum if it has hardened surface.	
	Drum has hardened surface.	Replace.	
	Shoe is deformed.	Replace.	
	Back plate is deformed or installed improperly.	Replace or adjust	
	Front bearing is loosened.	Adjust (Check the rolling surface)	
	Powder from the wear of the lining is adhered.	Clear	
	Lining is worn.	Replace.	
Exhaust brake does not work.	Vacuum pressure is improper.	Check the vacuum pump or piping. If ne- eded repair.	
	Electric circuit is defective.	Check the clutch switch, the micro switch and the exhaust brake circuit. If needed, repair.	
	Vacuum pipe is damaged.	Replace.	
	3-way magnetic valve does not work.	Replace.	
	Exhaust brake valve does not work.	Replace.	
	Exhaust brake valve shaft is adhered.	Replace.	
	Power chamber is defective.	Disassemble and check.	
Exhaust brake c-	3-way magnetic valve does not work.	Replace.	
an not be relea- sed.	Exhaust brake valve does not work.	Replace.	
	Exhaust brake valve shaft is adhered.	Replace.	
	Electric circuit is defective.	Check the clutch switch, the micro switch and the exhaust brake circuit. If needed, repair.	

Diagnosis (Parking brake)

Symptom		Causes	Remedy	Remark
Parking brake d- oes not work.	Operating mechanis- m has a p-	When pulling the parking brake wi- th 30kg, there is no lever stroke cl- earance and shoe clearance.	Adjust the shoe clearance and cable.	
	roblem.	The locking status between the le- ver lock latch and Ratchet pull is i- mproper.	Adjust the Ratchet pull lock status. Repl- ace it	
		Wire is broken or elongated.	Replace the cable.	
	Parking b- rake is de- fective.	Tolerance between the shoe clear- ance and the brake lever pulling is too large.	Adjust the shoe clearance.	
		Drum inner surface is deformed or twisted.	Repair the drum inner surface. Replace the lining.	
		Lining is irregularly worn. Drum in- ner surface is contacted irregularly	Replace the lining.	
		The oil of drum and lining is conta- minated.	Clear the inner surface of the drum. Replace the lining.	
Parking brake c- an not be relea- sed.	Operating mechanis- m has a p-	Return spring is damaged. The te- nsion of the return spring is inferior	Replace the return spring.	
	roblem.	The inner cable does not move s- moothly.	Replace the cable.	
		After the parking brake is released , the brake is operating.	Adjust the pulling tolerance limit.	
	Parking b- rake is de- fective.	Return spring is damaged. The tension of the return spring is inferior	Replace the return spring.	
		The shoe clearance is too narrow.	Adjust the shoe clearance.	

On-Vehicle Inspection and Adjustment Air bleeding of the Brake

1. Fill up the brake oil tank with the brake oil at the maximum level. During the air bleeding, if the level is lowered, refill the brake oil.

Be careful that the brake oil does not drop on the painted surface. If the brake oil contacts the painted surface, immediately wash it by water.

2. Connecting an end of transparent vinyl tubes at the air breather of the front wheel cylinder and the rear wheel cylinder, put the other end of the tubes into the transparent container having the brake oil.

KMTBR5518A

3. Step on the brake pedal several times. Pressing the brake pedal at half, loosen the air bleeder screw to evacuate the air with the brake oil.

And then, pressing the pedal until it reaches to the floor, tighten the air bleeder screw. Release the pedal. There procedures should be repeated until any air bubble is not shown in the brake oil.

KMTBR5519A

4. Tighten the bleeder screw

Tightening Torque for the bleeder Screw Front: 6.9~8.8Nm(0.7~0.9kgf.m, 5.1~6.5lb-ft) Rear : 6.9~8.8Nm(0.7~0.9kgf.m, 5.1~6.5lb-ft)

5. Step on the brake pedal several times. Pressing the brake pedal at half, loosen the air breather screw to evacuate the air with the brake oil.

And then, pressing the pedal until it reaches to the floor, tighten the air breather screw. Release the pedal. There procedures should be repeated until any air bubble is not shown in the brake oil.

KMTBR5520A

Adjustment of Brake Shoe Gap

 Using the screw driver(A), turn the wheel cylinder adjuster(B) to the shoe expansion direction until the drum is not rotate anymore. Turn the adjuster reversely with the following notch number. (At that time, the drag torque between the lining and the drum should be less than 50kgf.m).

KMTBR5521A

The Notch Number for reverse rotation of the Adjuster.

Front Wheel Cylinder	Auto adjuster type	9~11
	Manual adjuster type	4~6
Rear Wheel Cylinder	Auto adjuster type	9~11
	Manual adjuster type	4~6

Specifications

Front Wheel Brake (Drum Type)

Item		Specifications
Brake type		2-leading Brake
Wheel cylinder	Inner diameter	31.75mm
Brake drum	Inner diameter	320mm
Brake lining	Width x Thickness (mm)	85 x 10(Standard), 110 x 11(Option in case of HD72,78)

Front wheel Brake (Disk Type)

Item	Specifications
Cylinder diameter	Ø 76 mm
Effective radius	118 mm
Disk outer diameter	Ø 304 mm
Disk inner diameter	Ø 164 mm
Pad thickness	12.5 mm
Pad effective thickness	10.5 mm

Rear Wheel Brake

Item		Specifications
Brake type		2-leading Brake
Wheel cylinder	Inner diameter	28.57mm
Brake drum	Inner diameter	320mm
Brake lining	Width x Thickness (mm)	85 x 10(Standard), 110 x 11(Option in case of HD72,78)

Brake system

Item			Specification	
Brake Pedal	Total Stroke		140 mm	
Booster	Total Stroke		31 mm	
Master Cylinder	Master Cylinder Inner Diameter Stroke Piston		Ø 31.75 mm, Ø 30.15 mm	
			31±1 mm	
		Primary	17 ± 0.5 mm	
		Secondary	14 \pm 0.5 mm	

Exhaust Brake

Item		Specification		
Control System		Combination of Electric and Vacuum Type		
Exhaust Brake Valve Type			Butterfly Valve	
Exhaust Brake Cham-	Diaphragm Effective Dia	ameter	76.2mm	
ber	With Installing	Spring Tension	90~110 (9.18~11.22)	
	N(kg)	Rod Tensile Force	142.1(14.5): Vacuum Pressure-400mmHg	
		Spring Tension	125~153 (12.78~15.62)	
		Rod Tensile Force	103(10.5) Vacuum Pressure-400mmHg	

Parking brake

Item		Specification
Туре		Internal expansion type acting on propeller shaft
Control		Mechanical cable
Parking lever	Normal stroke	8~9 clicks(20 kgf)
Parking brake size	Drum i.d. x Lining width x Li- ning thickness	180 x 35 x 5 (T/M : M2S5, M3S5) 190 x 45 x 4 (T/M : M035S5) 230 x 55 x 4 (T/M : T60S5, T60S6)

SERVICE STANDARDS

Description				Nominal (Basic dia	value, mm meter in [])	Limit (mm)	Correction and remarks
Brake	Bushing to collar clearance			[16]0.02 to 0.26		0.5	Replace bushing
pedal	Brake pedal play	y		3-8			Adjust
	Stop lamp switc	h installation cl	earance	0 to 1			Replace
Brake master	Primary and sec	condary piston	to cylinder body clearance	0.038 ~ 0.1	145	0.2	Replace
cylinder	Primary retainer	assembly	Free length	38.1			Replace
	Secondary spring deterioratio- n		Free length	37.7			Replace
Front	Brake drum	I.D.	I.D.			322	Replace
drum b-	Brake lining	Thickness		10		4	Replace
Take	Return spring			30±3/227		19/227	Replace
	Wheel cylinder b	oody to piston o	clearance	[31.75]0.03	to 0.13	0.2	Replace
	Brake shoe clea	rance(No. of n	otches returned of wheel c-	Auto	9~11		Adjust
	ylinder adjuster)			Manual	4~6		
Rear w-	Brake drum	I.D.		320		322	Replace
heel br-	Brake lining	Thickness		10		4	Replace
uno	Return spring	Load N(kgf)/in	stalled length	30±3/227		19/227	Replace
	Wheel cylinder	Body to pistor	clearance	0.02-0.11		0.2	Replace
	Brake drum	Out of roundn	ess	0.05		-	Replace
	Brake shoe clea	rance (number	of return notches of wheel	Auto	9~11		Adjust
	cylinder adjuste	r)		Manual	4~6		

Description					Nominal value, mm (Basic diameter in [])	Limit (mm)	Correction and remarks
Exhau- st brak-	Power chamber air tightness [15 seconds after applicatio- n of -67 kPa (-500 mmHg) negative pressure]			-63 kPa (-475 mmHg) or more		Replace	
е	Valve to body cl ed [at power cha 0 mmHg)	earance when amber vacuum	butterfly valve is fully -87 to -93 kPa(-650 to	0.1 to 0.4mm		Replace	
	3-way magnet valve	way magnet Air tightness alve	 When -100 kPa (-750 m- mHg) negative pressure is applied from vacuum tan- k side to operate valve wi- th exhaust brake unit side plugged tightly When 98 kPa (1 kgf/cm² air pressure is applied fro- m atmosphere side to op- erate valve with exhaust brake unit side plugged ti- ghtly 		No air to be sucked in f- rom atmosphere side		Replace
					No air to leak from vacu- um tank side		Replace
		Minimum op- erating volta- ge	When -100 kPa(-75 0 mmHg) negative pressure is applied to vacuum tank side	24V type unit	22V or less		Replace
			When 98 kPa (1 kgf /cm ² air pressure is applied from atmos- phere side with exh- aust brake unit side plugged tightly	24V type unit	22V or less		Replace

SERVICE STANDARDS (Parking brake)

Description			Nominal value, mm (Basic diameter in [])	Limit (mm)	Correction and remarks
Brake drum	I.D.		180	181	Correct to limit, replace when li-
			190	192	
			230	232	
	Squareness		0.05 or less		Correct or repla-
	Concentricity		0.1 or less		ce
	Cylindricity		0.1 or less		
Static rotation imbalance		ance	0.49 N.cm(50 gf.cm) or I- ess		
Brake lining thickness		Model with M2S5 T/M	10 ~ 11	4.0	Replace
Brake shoe cle	earance	Model with M2S5 T/M	0.25 to 0.35		Adjust
Brake shoe r-	Free length	Model with M2S5 T/M	98	-	
eturn spring	Load N (kgf)/instal- led length	Model with M2S5 T/M	67 to 86 (6.8 to 8.8)/104	104.364 (6.5)/104	Replace
Shoe hold d-	Spring A(longer o-	Free length	34.1		Replace
own spring	ne of free length)	Load N (kgf)/installed I- ength	59 to 69 (6.0 to 7.0)/13.7	59 (6.0)/13.7	
	Spring B(shorter o-	Free length	23.6		
	ne of free length)	Load N (kgf)/installed I- ength	59 to 69 (6.0 to 7.0)/10.5	59 (6.0)/10.5	

Tightening torque table

Description	Tightening torque		
	Nm	Kgf.m	Lb-ft
Mounting nut between the master cylinder and booster	17.7~24.5	1.8~2.5	13~18.1
Master cylinder set bolt	12~16	1.2~1.6	8.7~11.6
Brake booster mounting nut	12.7~15.7	1.3~1.6	9.4~11.8
Brake booster clevis lock nut	15.7~21.6	1.6~2.2	11.6~15.9
Master cylinder outlet port nut	12.7~16.8	1.3~1.7	9.4~12.3
LSPV connecting link mounting bolt	22~33	2.2~3.3	15.9~23.9
LSPV flange bolt mounting bolt	22~33	2.2~3.3	15.9~23.9
Front drum brake air bleeding port	6.9~12.7	0.7~1.3	5.1~9.4
Front spindle mounting bolt	98~137	10~14	72~101
Brake hose to union mounting bolt(Front drum brake)	24.5~29.4	2.5~3	18.1~21.7
Exhaust brake to exhaust pipe mounting bolt	44.1~58.8	4.5~6	32.5~43.4

Vacuum Assisted Hydraulic Brake

Brake Pedal

Component

- 1. Clevis pin
- 2. Hose connector
- 3. Grommet
- 4. Master cylinder

- 5. Booster
- 6. Pedal assembly
- 7. Return spring

Removal

- 1. Loosen the steering column assembly mounting bolt. Pull down the steering column.
- 2. Loosen the bolt(A), Remove the instrument panel(B).

KMTBR5003A

- 3. Remove the master cylinder (Refer to the BR-"Master cylinder")
- 4. Remove the brake booster (Refer to the BR-"Booster")
- 5. Remove the brake light switch.
- 6. Remove the shaft bolt(A) connected to the bracket.

KMTBR5040A

Installation

1. Install the brake pedal assembly(A) to the bracket(B).

Before the assembling, apply the grease inside of the brake pedal assembly pipe.

KMTBR5527A

- 2. Install the brake light switch.
- 3. Install the booster and the master cylinder.

Apply the grease on the clevis pin and the washer

Adjustment

Adjust the height of the brake pedal

 Turn the booster operating rod so that the distance from the center of the brake pedal pad to the A point of the instrument panel lower portion is the 'B'. After adjusting, fix the clevis with the nut. Check that the maximum stroke of the pedal is more than 'C' (before filling the brake oil)

SUDBRA004L

Vacuum Assisted Hydraulic Brake

	Engine	B(mm)	C(mm)
Non A-	D4DD, D4GA	280±2	140±4
BS	The others	273±3	140±4
ABS	D4DD, D4GA	280±2	140±4
	The others	273±2	140±4

Free play clearance of the Brake pedal

1. Setting the brake pedal to the original position, check if the free play(B) clearance is 5mm at least by pressing the pedal(A).

If the clearance excesses the reference, re-adjust the position of the brake pedal.

When checking the free play clearance of the brake pedal, the master back negative pressure should be 0.

KMTBR5005A

Gap between the brake pedal and the floor.

1. After cranking the engine, check if the gap between the floor and the pedal is more than 45mm by pressing the pedal with 50kg.

EMTBR5023A

Stop Lamp Switch

 Adjusting the gap between the end of the brake. Stop lamp switch screw and the pedal stopper to 0~1mm, tighten the locknut.

SUDBR9014L

Brake Booster

Components

- 1. Clevis pin
- 2. Hose connector
- 3. Grommet
- 4. Master cylinder

- 5. Booster
- 6. Pedal assembly
- 7. Return spring

Vacuum Assisted Hydraulic Brake

Removal

- 1. Loosen the bolt for mounting of the steering column assembly. Put the steering column down.
- 2. Loosen the bolt(A), Remove the instrument panel(B).

KMTBR5003A

3. Taking out the brake hose linking between the brake oil and the master cylinder, evacuate the brake oil. Also, taking out the clutch hose of the clutch master cylinder, evacuate the brake oil.

As the brake oil could be harmful to the painted surface, if the body is contaminated by the brake oil, clean it out with water or soap water.

KMTBR5523A

4. Loosen the 2 bolts for mounting the master cylinder. Disassemble the reservoir hose and the brake tube. Remove the master cylinder.

KMTBR5524A

- 5. Remove the brake booster and the master cylinder.
- 6. Remove the booster clevis pin (A) installed at the brake pedal assembly.

Loosen the booster mounting nut (C) from the pedal support member (B). Remove the booster.

KMTBR5004A

Installation

1. Insert the clevis pin (A) into the brake pedal. Fix the split pin firmly.

KMTBR5004A

- 2. Tighten the booster mounting nut (C) to the pedal support member (B).
- 3. Connect the vacuum hose to the booster.
- 4. Assemble the master cylinder to the booster. Connect the reservoir hose and the brake tube.
- 5. Assemble the instrument panel. Install the steering column.

- After installing the brake booster, adjust the height of the brake pedal and the free play clearance.
- When installing, the snap pin and the clevis pin are should be replaced new ones.
- Apply the recommended grease on the clevis pin and the washer.
- 6. Fill the reservoir with the brake oil. Perform the brake air bleeding.
- 7. Check the brake oil leakage.

Vacuum Assisted Hydraulic Brake

Inspection

There are two methods for inspecting the booster. The one is not to use the tester, the other is to use a simple tester for inspecting the characteristics. These two methods can be performed on vehicle. Before the inspection, check if the brake pipe and the hose are connected tightly or damaged.

KMTBR5525A

EMTBR5020A

- Be careful that a sharpen material does not intrude into the check valve.
- Check at the opened state and at the closed state of the valve.
- If it is replaced with kit, do not replace the check valve.

Test for temporarily operating of Booster

The followings are for checking the general functions of the booster.

- If the booster has problem, it should be replaced in assembly because it can not be disassembled for repair.
- 1. Method without tester

After checking the following three-items, if they are all normal, then most functions of booster would be normal. If one of following items has a problem, the booster may have been damaged.

- Check Valve
- Vacuum Hose
- Booster

EMTBR5021A

Vacuum Assisted Hydraulic Brake

2. Method for test using a simple tester

If it lease one of two among the gauges shows

abnormal valve, the following components may have As shown in following figures, connect the vacuum a problem. gauge, the pressure gauge and the stepping (foot pressing) power gauge. Test in the following Vacuum hose • sequence. Booster Check Valve Engine Start When the vacuum gauge is 500mmHg, press the pedal Measure the oil pressure of the stepping force gauge and the pressure gauge Pressure of the Stepping Pressure of the Pressure Remark Force Gauge Gauge А Booster: 257.8mm 10kg 30kg в Booster: 257.8mm Yes No Normal Defective **Engine Stop** When the vacuum gauge is 0kmmHg, press the pedal Measure the oil pressure of the stepping force gauge and the pressure gauge Pressure of the Pressure Pressure of the Stepping Remark Force Gauge Gauge С 10kg Booster: 257.8mm 30kg D Booster: 257.8mm Yes No Normal Defective B(kg/cm²) Engine A(kg/cm²) C(kg/cm²) D(kg/cm²) Non ABS D4DD, D4GA 37 2.5 12.5 81 Except for D4DD, D4GA 41 87 2.5 13.5 ABS D4DD, D4GA 48 78 2.5 13.3 Except for D4DD, D4GA 48 78 2.5 13.3

SUDBRA014L

Brake Master Cylinder

Components

- 1. Circlip
- 2. Guide bush
- 3. O-ring
- 4. Vacuum seal
- 5. Primary piston
- 6. Plunger Washer

- 7. Recup seal
- 8. Retainer ass'y
- 9. L-type seal
- 10. Secondary piston
- 11. Recup seal
- 12. Secondary Spring

SUDBRA006L

- 13. Reservoir seal
 14. Adaptor Pipe Fitting
- 15. Cylinder pin
- 16. Washer
- 17. Bolt
- 18. Body
Vacuum Assisted Hydraulic Brake

Removal

- 1. Loosen the steering column assembly mounting bolt. Put down the steering column.
- 2. Loosen the bolt(A), Remove the instrument panel(B).

KMTBR5003A

3. Take out the brake hose installed between the brake oil tank and the master cylinder. Evacuate the brake oil. Take out the clutch hose of the clutch master cylinder. Evacuate the brake oil.

If the painted surface is contaminated by the brake oil, the painted surface may be damaged. Clean out the brake oil from the body with water or soap water. Be careful that the brake oil does not contact you.

KMTBR5524A

- 4. Remove the tubes connecting to the front brake and the rear brake.
- 5. Remove the 2 of master cylinder bracket nuts connecting to the booster.

KMTBR5042A

6. Disassemble the primary piston assembly.

SUDBR9021L

7. Taking off the stopping, disassemble the secondary piston assembly.

Check if the master cylinder inner surface and the piston surface. If any one is damaged, replace it in assembly unit.

Installation

1. After assembling the secondary piston assembly(A), fix it with the cylinder pin.

Clear the inside of the cylinder or piston with the brake oil or alcohol. When assembling, apply the brake oil at piston and seal.

SUDBR9022L

2. Assemble the primary piston assembly(C). When assembling piston, assemble the retainer seal and recup seal align with the arrow direction to prevent the recup seal from being damaged. (Use only DOT3 for the brake oil.)

- 3. Install the master cylinder at the booster.
- 4. Connect the two brake tubes. Connect the two brake tubes to the reservoir tank.
- 5. After installing the master cylinder, perform the air bleeding.

Load Sensing Proportioning Valve(L.S.P.V)

COMPONENTS

- 1. LSPV assembly
- 2. Bleeder screw
- 3. Bracket

- 4. Lever assembly
- 5. Sensor spring
- 6. Spring guide

- 7. Adjusting nut
- 8. Operating lever
- 9. Connecting link assembly

SUDBRA007L

Removal

1. Remove the brake tube(A) connecting to the LSP valve.

KMTBR5557A

2. Remove the LSP valve mounting bolt and nut.

Service and Inspection of the LSPV

- 1. Check the LSPV as below when replace the sensor spring, valve body assembly or reinstall the rear axle, rear spring.
 - 1) Braking force is insufficient

Probable Cause	Remedy
Insufficient air bleeding	Air bleeding
Maladjusted sensor spring	Readjust
Sensor spring broken	Replace valve assembly
Oil leakage in the brake fl- uid line or LSPV assembly	Tighten brake fluid line or replace LSPV assembly

2) Rear brake is lock too fast

Probable Cause	Remedy
Maladjusted sensor spring	Readjust
Inner fault the LSPV	Replace LSPV assembly

Front Brake Assembly

Disc Brake

Components

- 1. Brake disc
- 2. Hub 3. Bearing
- 7. Cottor pin 8. Grease cap
- 9. Sleeve plug
- 4. Clow washer 5. Nut
- 6. Nut cab
- 10. Sleeve bolt 11. Sleeve boot
- 12. Sleeve
- 13. Piston seal
- 14. Caliper bridge
- 15. Caliper housing
- 16. Piston 17. Boot

- SUDBRA008L
- 18. Retaining ring
- 19. Retaining pin
- 20. Brake pad
- 21. Pad spring

Removal

- 1. Parking the car, remove the front tire. (Refer to the PA-"Front Axle")
- 2. After taking off the clip(A), remove the retaining pin(B).

3. Remove the pad spring(A).

KMTBR5534A

KMTBR5533A

4. Remove the pad and the spacer(A) from the caliper housing.

KMTBR5535A

5. Loosen the bolt. Remove the flexible hose(A) from the caliper.

Fix the hose to prevent the brake oil from flowing out.

KMTBR5536A

Front Brake Assembly

6. After loosening the 4 bolts(A), remove the bridge from the caliper housing.

KMTBR5537A

7. Loosing the fixing bolt(A) of the caliper housing, remove the housing.

KMTBR5538A

Installation

1. Install the pad to the caliper housing with being the warning indicator to the lower portion.

Do not contaminate the surfaces of the pad and disk with oil and dust.

2. Install a new pad spring and a new retaining pin(A).

KMTBR5533B

- 3. After inserting the retaining ring, install the clip.
- 4. Install the caliper housing(A) to the knuckle.

KMTBR5538A

BR-44

5. Install the bridge(A) to the caliper housing.

KMTBR5537A

6. Install the flexible hose(A).

- When installing, be careful that the hose is not twisted.
- If the brake oil is leaked, clear it perfectly.

KMTBR5536A

- 7. Assemble the clip, the retaining pin, the pad spring and the pad.
- 8. Install the front wheel.

Disassembly

1. Using a driver, remove the retaining ring(A).

KMTBR5539A

2. Using a driver, remove the cylinder boot.

KMTBR5540A

 Insert a cloth for preventing from damage between the piston and the cylinder. Using an air gun(A), remove the piston from the cylinder.

Front Brake Assembly

BR-45

KMTBR5541A

4. Remove the piston seal(A) using a driver.

KMTBR5542A

Reassembly

- 1. Clear the piston and the cylinder with the brake oil.
- 2. Insert a new piston seal(A) into the caliper cylinder groove.

KMTBR5543A

3. Assemble the piston to the cylinder boot careful that the piston(A) is not twisted.

When assembling the piston, be careful that the piston seal is not damaged.

KMTBR5544A

4. Assemble a new cylinder boot(A) to the caliper cylinder along to the direction as shown in figure.

Insert the boot correctly into the cylinder groove.

KMTBR5545A

5. Assemble a new retaining ring(A) to the cylinder boot.

Be careful that the boot is not damaged.

KMTBR5546A

6. Assemble a new dust boot(A) to the caliper housing(B).

Install a bushing at the dust boot.

Check if the bushing can slip slightly.

KMTBR5547A

Inspection

- Check the Caliper Pad
- 1. Remove the front wheel
- 2. Check the pad thickness.

Reference Value	12.5mm
Limit Value	2.0mm

KMTBR5548A

Check the Disk

1. Check the thickness of the disk

Reference Value	30mm
Limit Value	28mm (By each rotor face : 1mm)

SUDBR7501D

Front Brake Assembly

SUDBR7502D

- 2. Check the disk vibration
 - 1) Before checking the disk vibration, firstly check the clearance of the wheel bearing.
 - Using a dial gauge, check the disk vibration at the 10mm position from the disk to outside.

KMTBR5550A

- If the disk vibration exceeds the limit, check the vibration of the front axle.
- 4) If the front axle vibration is less than limit, adjust the disk vibration within the limit.
- 5) If the disk vibration exceeds the limit, replace the disk.

- 3. Replace the front disk
 - 1) Disassemble the disk from the axle hub.
 - 2) Loosening the 10 bolts, disassemble the axle lower part and the disk.
 - 3) Install a new disk to the axle hub.

When replacing the disk, clean the space between teeth of pulse-ring without damage of pulse-ring tooth. Be cautious not to come off the gilt.

- 4) Install the axle hub to the steering knuckle.
- 5) Adjust the free rod of the front wheel bearing.

Drum Brake

Components

1. Return spring

- 2. Shoe hold down cup
- 3. Shoe hold down spring
- 4. Shoe hold down pin
- 5. Shoe and lining assembly

- 6. Rivet
- 7. Lining
- 8. Shoe
- 9. Pipe
- 10. Rubber

- 11. Connector
- 12. Wheel cylinder assembly
- 13. Cover
- 14. Backing plate
- 15. Brake drum

Front Brake Assembly

Removal

1. Parking the car, remove the front tire. (Refer to the PA-"Front Axle").

When removing the wheel and tire (A), be careful that the hub bolt (B) is not damaged.

KMTBR5006A

2. After removing the wheel cap (A), remove the split pin (B) and the lock nut (C).

When removing the lock nut (C), be careful that the washer and the outer bearing are not drop down to the ground.

KMTBR5007A

3. Remove the washer (A), the outer bearing (B) and the hub knuckle (C) from the knuckle (D).

KMTBR5008A

4. Remove the shoe hold down spring and the shoe hold down pin. Removing the return spring, remove the shoe and lining assembly.

EMTBR5029A

Replacement Wheel Cylinder

 After running 64,000km, check if the inside of the adjuster piston and the wheel cylinder have rusts.
 Check that the dust heet is damaged. Check that the

Check that the dust boot is damaged. Check that the piston cup has been worn, cracked and swelled. After checking, if needed, replace the damaged parts.

2. Loosening the screw, disassemble the adjuster piston.

EMTBR5030A

Bleeder Screw Tightening Torque:

6.9~8.9Nm(0.7 ~ 0.9 kgf.m, 5.1~6.5lb-ft)

Lining

1. Using a drill machine, drill the jointing part of the shoe side rivet. Remove the lining.

KMTBR5553A

- 2. Assemble the lining
 - 1) Clear the lining mounting surface of the shoe with the specific oil.
 - 2) Perform the riveting with the pressure of 2100 \pm 100kg.

KMTBR5554A

- 3) When performing the riveting, at the 0.4mm position of the side end surface, the shoe lining gap should be 0.3mm or less. At the around of the rivet, it should be 0.5mm or less.
- After checking that the brake drum and the lining are contacted, if there is any defective, modify it with the brake lining grinder.

- Lining should be replaced in a kit.
- Use the same size of the lining
- Do not contaminate the lining surface with oil or grease.
- When replacing the lining, clean the space between teeth of pulse-ring without damage of pulse-ring tooth. Be cautious not to come off the gilt.

SUDBR9025L

Installation

- 1. After assembling the wheel cylinder assembly, install the shoe return spring.
- 2. Install the shoe hold down spring.

EMTBR5029A

- 3. Apply the grease at each part.
- 4. For installing the drum brake, refer to the PA-"Front Axle."

Parking Brake System

Components

- 1. Return Spring
- 2. Return Spring
- 3. Shoe Guide Plate
- 4. Strut Spring
- 5. Adjuster Spring
- 6. Shoe Hold Pin
- 7. Spring Seat
- 8. Hold Spring
- 9. Spring Seat
- 10. Adjuster
- 11. Shoe Assembly
- 12. Strut
- 13. Parking Brake Cable

- SUDBRA010L
- 14. Shoe Assembly
- 15. Parking Brake Lever
- 16. Cable
- 17. Parking Brake Assembly

Parking Brake System

Removal

 Make an alignment marking(C) to the flange yoke (A) of the front propeller shaft and the parking brake drum(B). Remove the tightening nut (D) of the propeller shaft.

KMTBR5021A

2. Remove the tightening bolt (A) of the center bearing bracket.

KMTBR5022A

WNOTICE

For short axis, the center bearing is one. For long-axis, the center bearing are two.

3. Remove the front propeller shaft(A).

KMTBR5023A

4. Remove the parking brake cable clip (A).

KMTBR5568A

5. Using a companion flange puller, remove the companion flange from the main shaft.

Companion flange pulley

EMTBR5040A

6. Using a socket wrench, remove the flange bolt. Remove the shoe and lining assembly.

EMTBR5041A

- 7. Remove the shoe hold pin and spring.
- 8. Taking off the return spring(A), remove the shoe assembly(B).
- 9. Remove the parking brake cable(C).

KMTBR5024A

Installation

1. Install the shoe and lining assembly(B) to the back plate(A).

- Do not contaminate the lining surface with foreign materials.
- The outer diameter of the lining should be Ø180.
- Apply the grease at the following portions.
 - Contacting surface between the back plate and the shoe.
 - Contacting surface between the shoe and the anchor pin.
 - Contacting surface between the adjuster thread and the nut and sleeve.

KMTBR5045A

2. After installing the parking brake cable, install the shoe hold pin and spring.

KMTBR5046A

Parking Brake System

BR-55

3. Aligning the align markings(C) of the rear axle companion flange (A) and the flange yoke (B) of the rear propeller shaft, install the tightening bolt (D) of the propeller shaft.

Tightening Torque :

98~117 Nm(10~12 kgf.m, 72.3~86.7 lb-ft) : P3 59~69 Nm(6~7 kgf.m, 43.3~50.6 lb-ft) : P2

KMTBR5025A

4. Install the tightening bolt (A) of the center bearing bracket.

Tightening Torque :

69~93 Nm(7.0~9.5 kgf.m, 50.6~68.7 lb-ft)

KMTBR5022A

WNOTICE

For short-axis, the center bearing is none. For long-axis, the center bearing is one.

5. Aligning the align marking (C) of the flange yoke (A) of the front propeller shaft and that of the parking brake drum (B), install the tightening nut (D) of the propeller shaft.

98~117 Nm(10~12 kgf.m, 72.3~86.7 lb-ft)

KMTBR5021A

6. Inject the recommended grease to the grease nipple
 (A) until the grease is leaked out oil seal. Clear the leaked grease.

Recommended Grease: ALVANIA EP#2

KMTBR5026A

Adjustment

Method for adjusting the Lining gap.

- 1. Turn the adjuster to the shoe expansion direction until the shoe contacts the drum.
- 2. Turn the adjust to the reverse direction of the shoe expansion direction with $8 \sim 10$ notch.

EMTBR5042A

3. After operating the parking brake lever several times, turn the drum with hand. At that time, the lining should not contact with the drum.

Adjusting the parking brake

- 1. Release the parking brake.
- 2. Pulling the out cable with the $6\sim10$ kgf force, locate the nut (A) at the position at which the gap is $3\sim7$ mm.

KMTBR5027A

3. Returning the out cable. Tighten the nut (B) near the nut (A) with the specified torque.

Tightening Torque:

38.2~50Nm(3.9~5.1kgf.m, 28.2~36.9lb-ft)

- 4. After the initial adjusting of the cable, check the following items.
 - 1) Check the click number of the parking brake and hand force.

Hand force	Number of lever click
20kg or more	8~9 notch

- 2) Check that the parking brake warning Lamp is normally working.
- 3) Tighten the parking brake bracket flange bolt with the specified torque.

Tightening Torque: 11.8~14.7Nm(1.2~1.5kgf.m, 8.7~10.9lb-ft)

Rear Brake Assembly

Drum Brake

Components

7. Lining

8. Shoe

9. Pipe

10. Rubber

- 1. Shoe hold down cup
- 2. Shoe hold down spring
- 3. Shoe hold down pin
- 4. Return spring
- 5. Shoe and lining assembly

WNOTICE

Use alcohol, brake fluid, or other vegetable oil to clean rubber parts.

When alcohol is used, do not immerse for more than 30 seconds.

- 11. Wheel cylinder assembly
- 12. Cover
- 13. Backing plate
- 14. Brake drum

BR-58

EMTBR5064A

Removal

1. Place the wooden blocks (A) at the front and rear sides of the front wheel.

KMTBR5010A

 Loosen the wheel nut. Lift up the axle with the garage jack (A) and support the frame stand (B).

KMTBR5011A

3. After taking off the wheel nut (A), remove the wheel and tire (B) from the hub (C).

When removing the wheel and tire (B), be careful that the hub bolt (B) is not damaged.

4. After taking off the hub bolt (A), remove the axle shaft (B).

KMTBR5013A

If the axle shaft (B) is hard to remove, insert the hub bolt (A) into the removing screw hole (C) and then try to remove it.

5. Remove the oil seal (A)

KMTBR5014A

Rear Brake Assembly

6. Loosening the lock nut tightening bolt (A), remove the lock washer (B).

KMTBR5015A

7. Using the special tool (09527-47000), remove the lock nut (A).

KMTBR5016A

8. Remove the rear wheel hub (B) with the outer bearing (C) from the axle housing (A).

KMTBR5017A

Be careful that the outer hub bearing(C) is not torn off.

9. Remove the shoe hold down spring and the shoe hold down pin. Remove the return spring. Remove the lining assembly.

EMTBR5029A

Replacement Wheel Cylinder

- After running 64,000km, check if the inside of the adjuster piston and the wheel cylinder have rusts. Check that the dust boot is damaged. Check that the piston cup has been worn, cracked and swelled. After checking, if needed, replace the damaged parts.
- 2. Loosening the screw, remove the adjuster piston.

EMTBR5030A

Bleeder Screw Tightening Torque: 6.9~8.9Nm($0.7 \sim 0.9$ kgf.m, 5.1~6.5lb-ft)

Lining

1. Using a drill machine, drill the joining part of the shoe side rivet. Remove the lining.

KMTBR5553A

- 2. Assemble the lining
 - 1) Clear the lining mounting surface of the shoe with the specific oil.
 - 2) Perform the riveting with the pressure of 2100 \pm 100kg.

KMTBR5554A

3) When performing the riveting, at the 0.4mm position of the side end surface, the shoe lining gap should be 0.3mm or less. At the around of the rivet, it should be 0.5mm or less.

 After checking that the brake drum and the lining are contacted, if there is any defective, modify it with the brake lining grinder.

- Lining should be replaced in a kit.
- Use the same size of the lining
- Do not contaminate the lining surface with oil or grease.
- When replacing the lining, clean the space between teeth of pulse-ring without damage of pulse-ring tooth. Be cautious not to come off the gilt.

SUDBR9025L

Installation

- 1. After assembling the wheel cylinder assembly, install the shoe return spring.
- 2. Install the shoe hold down spring.

EMTBR5029A

- 3. Apply the grease at each part.
- 4. Inject the recommended grease at the inside of the wheel hub (A).

Recommended Grease: RETINAX 0434 of Hankook Shell Oil Co., Ltd RETINAX 0419 of Hankook Shell Oil Co., Ltd KO-GW02 of CheonMa Mineral Oil Co., Ltd

KMTBR5017A

 Install the rear wheel hub (B) and the outer bearing (C) at the axle housing (A).

Use only the set comprising the bearing and the bearing race.

 For the next step of installation, refer to the PA-"Rear Axle."

Exhaust Brake

Component location - D4GA engine

Front exhaust pipe
 Exhaust brake assembly

3. Muffler

4. Manual transmission

5. Parking brake-drum
 6. Propeller shaft

Exhaust Brake

Component(1) - D4GA engine

1. Vacuum tank

- Magnetic valve
 Exhaust brake unit
- 4. Exhaust pipe

SUDBRA017L

Component(2) - D4GA engine

SUDBRA018L

- 1. Cover
- 2. Clevis
- 3. Power chamber
- 4. Exhaust brake valve

Never do not disassemble the power chamber.

Exhaust Brake

Component (1) - Except D4GA engine

- 1. Vacuum tank
- 2. Magnetic valve
- 3. Exhaust brake unit
- 4. Exhaust pipe

Component (2) - Except D4GA engine

[Exhaust brake unit]

SUDBRA013L

- 1. Cover
- 2. Clevis
- 3. Power chamber
- 4. Exhaust brake valve

The power chamber is non-disassembly type. Do not attempt to disassemble.

Exhaust Brake

Replacement [D4GA engine]

1. Remove the vacuum pipe(B) connected to the exhaust brake unit(A).

SUDBR8559D

- 2. Remove the mounting bolt connected to the front exhaust pipe. Remove the exhaust brake unit(A).
- 3. The installation is the reverse order of the removal.

The mounting bolt(Front exhaust pipe - exhaust brake unit) : $44.1 \sim 58.8 \text{ Nm}(4.5 \sim 6 \text{ kgf.m}, 32.5 \sim 43.4 \text{ lb-ft})$

When connecting the exhaust brake to the exhaust pipe, tighten them accurately lest the gas should not be leaked.

[Except D4GA engine]

1. Remove the vacuum pipe(B) connected to the exhaust brake unit(A).

KMTBR5579A

- 2. Remove the exhaust brake mounting bolt connected to the exhaust pipe.
- Remove the power chamber (B) from exhaust brake unit(A).

Do not try to disassemble the power chamber because it can not be disassembled.

KMTBR5580A

BR-68

Disassembly [D4GA engine]

- 1. Remove the exhaust brake cover(A).
- 2. Remove the clevis(B).
- 3. Remove the power chamber(C).

SUDBR8026D

Never do not disassemble the power chamber.

[Except D4GA engine]

1. Remove the power chamber (A).

Do not try to disassemble the power chamber because it can not be disassembled.

KMTBR5581A

- 2. Remove the exhaust brake cover (B).
- 3. Remove the clevis (C).

Reassembly [D4GA engine]

1. Open the butter fly valve completely. Then adjust the adjusting bolt(B) and tighten the lock nut for fixing the lever(A).

SUDBRA019L

 Fixing the rod of the power chamber in the state of press-in with 2~4 mm, tighten the lock nut(A).

SUDBR8028D

3. Adjust the adjusting bolt so as that the gap(A+B) between the body is below 0.3 mm, when the butterfly valve is fully closed due to the -650~-750mmHg of the vacuum pressure applied to the power chamber.

Exhaust Brake

SUDBRA020L

4. Tighten the mounting bolt like as below order when installing the exhaust brake.

SUDBR8030D

WNOTICE

Tighten the bolts like as picture. It doesn't matter wherever you start to tighten the bolt.

[Except D4GA engine]

1. With opening the butterfly valve, adjust the adjusting bolt(B) to fix the lever(A) and tighten the lock nut.

EMTBR5034A

2. Fixing the rod of the power chamber in the state of press-in with 2~4mm, tighten the lock nut(A).

KMTBR5561A

BR-70

 Adjust the adjusting bolt(A) so as that the gap between the body is 0.1~0.4mm, when the butterfly valve is fully closed due to the -650~-750mmHg of the vacuum pressure applied to the power chamber.

And then tighten the lock nut.

Check that the opening and closing of the brake valve is smoothly working when the power chamber is applied the vacuum pressure of -400~-600mmHg or atmospheric pressure.

EMTBR5035A

Inspection

1. Apply the vacuum pressure of 500mmHg or more to the power chamber(A) so as that the vacuum gauge(B) indicates the -500mmHg. After 15 seconds, check that the vacuum gauge indicates the specific valve.

EMTBR5036A

- 2. 3-way Magnetic Valve
 - 1) Check for air tightness
 - 1. Closing the valve of the exhaust brake unit side with a plug and applying the vacuum pressure of -750mmHg to the vacuum tank side valve, there should be no air leakage to the atmosphere side valve.

EMTBR5037A

 Closing the valve to the exhaust brake unit side and applying the air pressure of 1kg/cm² to the valve of the atmosphere side, there should be no air leakage to the vacuum tank side valve.

EMTBR5061A

- 2) Operating Inspection
 - 1. Applying the -750mmHg vacuum pressure to the vacuum tank side valve, check that the valve is working at the voltage of 22V or less.

EMTBR5038A

 Closing the exhaust brake unit side valve with a plug and applying the 1kg/cm² air pressure to the atmosphere side valve, check that the valve is working at the voltage of 22V or less.

ABS

ABS specification

24V
20~32 V
24 V
-40°~ 85°C
DC24V
17.5 A

DESCRIPTION

Overview

WABCO Hydraulic Anti-lock Braking System (HABS) is an electronic wheel speed monitoring and control system. E Version HABS consists of an electronic control unit (ECU) mounted directly on a modulator valve.

SUDBR9001L

How Hydraulic ABS Works

ABS wheel sensors detect wheel speeds. The sensors generate signals that are transmitted to an ECU. If the wheels start to lock, the ECU signals the modulator assembly to regulate the brake pressure of each locking wheel.

During an ABS stop, solenoid valves in the modulator assembly are rapidly pulsed; that is, it opens and closes several times per second to control the brake pressure. When this occurs, drivers may notice a pulsation of the brake pedal.

An ABS indicator lamp on the vehicle instrument panel alerts the driver to a possible system fault and provides blink code information to diagnose the system.

If the ABS indicator lamp comes on during normal vehicle operation, drivers may complete their trip, but are instructed to have their vehicle serviced as soon as possible.

In the unlikely event of an ABS system malfunction, the ABS in the affected wheel will be disabled and will return to normal braking.

The other sensed wheels will retain their ABS function.
SYSTEM LAYOUT

The ABS modulator assembly may be mounted in any orientation as long as the modulator is below the master cylinder and above the wheel cylinders.

SYSTEM COMPONENTS

The following components make up WABCO E Version HABS.

Electronic Control Unit (ECU)

The electronic control unit (ECU,A) processes sensor signals and generates solenoid valve commands to reduce, maintain or reapply brake pressure.

SUDBR9003L

Modulator Assembly

The modulator assembly contains brake fluid. Handle the modulator assembly with appropriate care. Do not expose the modulator assembly to impact loads or excessive vibrations.

Do not blow compressed air into the hydraulic ports.

Mishandling the modulator assembly may lead to component damage and system failure.

The modulator assembly houses the HABS solenoid control valves, one inlet valve and one outlet valve per wheel, a pump motor driving a pump system and a low pressure accumulator per circuit.

SUDBR9001L

Sensors

Sensor with Molded Socket

- It measures the speed of a tooth wheel rotating with the vehicle wheel.
- It produces an output voltage proportional to wheel speed.

Sensor Spring Clip

• It holds the wheel speed sensor in close proximity to the tooth wheel.

SUDBR9005L

Tooth Wheel

• A machined or stamped ring mounted to a machined surface on the hub of each ABS-monitored wheel.

SUDBR9006L

SUDBR9004L

Sensor Extension Cables

- Two-wire cable with molded-on connector.
- It connects the wheel speed sensor to the ECU.

SUDBR9007L

ABS Indicator Lamp

- It is located on vehicle instrument panel.
- It alerts drivers to a possible system fault.
- It is used by service personnel to display blink codes.

SUDBR9008L

System Diagnostics

Use Hi-Scan diagnostic equipment or standard blink codes to diagnose hydraulic ABS faults.

Blink Code Diagnostics

ABS Indicator Lamp: This lamp, located on the vehicle instrument panel, serves two purposes:

1. It alerts drivers or service personnel to a possible fault in the hydraulic ABS, as follows:

If the ABS indicator lamp comes on briefly then goes OFF when the ignition is turned ON there are no active faults in the hydraulic ABS. If the ABS indicator lamp comes on and stays on after the ignition is turned ON and the vehicle is driven in excess of four mph (6 km/h), there may be an active fault in the hydraulic ABS.

If the ABS indicator lamp comes on and stays on and goes OFF after the vehicle is driven in excess of four mph (6 km/h) or illuminates intermittently during driving, there may be a stored fault in the hydraulic ABS.

2. It displays diagnostic blink codes for easy servicing.

Blink Code: A series of blinks or flashes that describe a particular ABS system condition. Refer to Table A and Table B in this section for blink code identification.

Blink Code Diagnostics: The ability of the WABCO ECU to sense faults in the ABS system and to define these faults via blink codes.

Blink Code Mode: To ground the 12th pin of Data Link Connector activates blink code diagnostic capabilities.

Clearing Fault Codes: The process of erasing faults from the ECU memory bank. Refer to table A in this section.

Fault Code: An ABS condition (fault) detected and stored in memory by the WABCO ECU and displayed by blink code. System faults may be active or stored.

Active Fault: A condition that currently exists in the ABS system; for example, a sensor circuit malfunction on the left front steering axle. An active fault must be repaired before you can display additional faults. Once an active fault has been repaired, it becomes a stored fault.

Stored Fault: A condition that caused the system to register a fault, but is not currently active. For example, a loose wire that corrected itself. A stored fault can also be an active fault that has been corrected. Refer to active fault.

Table A, in this section, describes the method of distinguishing between active and stored faults and explains how to clear them.

Using Blink Code Diagnostics

Follow the steps listed in table A to use blink code diagnostics.

Table A: Identifying E Version Hydraulic ABS Blink Codes
--

Troubleshooting with Blink Code Diagnostics									
Mode	Procedure	System Response	Action						
Diagnostics	Step I.	Possible responses:							
	Turn ignition on.	1. ABS indicator lamp comes on momentarily then goes out, indicating System O.K.	No recognizable active faults in the ABS. No action required.						
		2. ABS indicator lamp does not light, indicating possible wiring fault or burned-out bulb.	Inspect wiring. Inspect bulb. Make the necessary re pairs.						
		 3. ABS indicator lamp stays on, indicating: * Fault, or faults, in the system * Sensor fault during last operation * Faults cleared from ECU, but vehicle not driven. * ECU disconnected. 	Continue with blink code diagnostics. Go to Step II Continue with blink code diagnostics. Go to Step II Drive vehicle — lamp will go out when vehicle rea hes four mph (6 km/h). Connect ECU.						
	Step II. Ground the 12th pi- n of Data Link Con- nector for one sec- ond, then release.	ABS indicator lamp begins flash- ing two-digit blink code(s).	Determine if fault is active or stored: Active Fault: Lamp will repeatedly display one code. Stored Fault: Lamp will display code for each stored fault then stop blinking. Faults will be displayed one time only.						
	Step III. Count the flashes to determine the b- link code.	First Digit: 1-14 flashes, Pause (0.5-3 seconds). Second Digit: 1-11 flashes, Pau- se (0.5-3 seconds).	Find definition for blink code on blink code chart.						
	Step IV.	Active Fault.	Make the necessary repairs.						
	Turn ignition OFF. Repair and Record faults.	Stored Faults.	Record for future reference.						

ABS

Clear	Step V. Turn ignition ON. Clear faults from memory: Ground t- he 12th pin of Data Link Connector for at least three seco-	ABS indicator lamp flashes eight times.	All stored faults successfully cleared. Turn ignition OFF. Turn ignition ON. The indicator lamp will stay on. T- his is because the ECU is looking for wheel speed. Drive the vehicle at a speed of four mph (6 km/h). Once the ECU senses wheel speed, the lamp will g- o off.					
	nds, then release.	Eight flashes not received.	Active faults still exist, repeat Step I through Step V.					

Exhaust Brake Reconfiguration

Within system mode (2 seconds after activation) the reconfiguration of the exhaust brake can be requested via grounding and releasing the 12th pin of Data Link Connector three times in a row.

Retarder reconfiguration is executed only if no active faults are being stored inside the ECU.

For confirmation the ABS warning lamp is blinked 4 times fast after the exhaust brake configuration has been reset.

Afterwards the system code is blinked out endlessly.

SUDBR9013L

Trouble shooting and testing

Blink code

SUDBR9009L

SUDBR9010L

E Version Hydraulic(Add-on) ABS Blink Codes

Use the information in Table B to identify a fault and check for correct volt or ohm measurements and repair the fault.

List of fault codes

Table B : E Version Hydraulic(Add-on) ABS Blink Codes

1st digit : Component being faulty

2nd digit : Detailed location of the fault or detailed description of the fault.

Table B

fault code (1st digit)	fault code (2nd digit)	Fault number	Repair Instruction
1 No Failure	1 No Failure	-	-
2 Sensor: Airgap	1 RHF	1	2.1 / 2.4
2 Sensor: Airgap	2 LHR	2	2.1 / 2.4
2 Sensor: Airgap	3 LHF	3	2.1 / 2.4
2 Sensor: Airgap	4 RHR	4	2.1 / 2.4
3 Sensor: Impedance	1 RHF	23	2.5
3 Sensor: Impedance	2 LHR	24	2.5
3 Sensor: Impedance	3 LHF	25	2.5
3 Sensor: Impedance	4 RHR	26	2.5
4 Sensor: No trigger at all	1 RHF	73	2.1 / 2.3 / 2.4 / 2.5 / 2.6
4 Sensor: No trigger at all	2 LHR	74	2.1 / 2.3 / 2.4 / 2.5 / 2.6
4 Sensor: No trigger at all	3 LHF	75	2.1 / 2.3 / 2.4 / 2.5 / 2.6
4 Sensor: No trigger at all	4 RHR	76	2.1 / 2.3 / 2.4 / 2.5 / 2.6
5 Sensor: Tyre Combination	1 RHF	63	2.2
5 Sensor: Tyre Combination	2 LHR	64	2.2
5 Sensor: Tyre Combination	3 LHF	65	2.2
5 Sensor: Tyre Combination	4 RHR	66	2.2
6 Power Amplifier: Short to Ubat/Uvent	1 RHF IV	9	1.1
6 Power Amplifier: Short to Ubat/Uvent	2 RHF OV	10	1.1
6 Power Amplifier: Short to Ubat/Uvent	3 LHF IV	11	1.1
6 Power Amplifier: Short to Ubat/Uvent	4 LHF OV	12	1.1
6 Power Amplifier: Short to Ubat/Uvent	5 RHR IV	13	1.1
6 Power Amplifier: Short to Ubat/Uvent	6 RHR OV	14	1.1
6 Power Amplifier: Short to Ubat/Uvent	7 LHR IV	15	1.1
6 Power Amplifier: Short to Ubat/Uvent	8 LHR OV	16	1.1
6 Power Amplifier: Short to Ubat/Uvent	9 EBR	17	1.1
6 Power Amplifier: Short to Ubat/Uvent	10 BLR	18	1.1

fault code (1st digit)	fault code (2nd digit)	Fault number	Repair Instruction
7 Power Amplifier: Open circuit	1 RHF IV	27	1.1
7 Power Amplifier: Open circuit	2 RHF OV	28	1.1
7 Power Amplifier: Open circuit	3 LHF IV	29	1.1
7 Power Amplifier: Open circuit	4 LHF OV	30	1.1
7 Power Amplifier: Open circuit	5 RHR IV	31	1.1
7 Power Amplifier: Open circuit	6 RHR OV	32	1.1
7 Power Amplifier: Open circuit	7 LHR IV	33	1.1
7 Power Amplifier: Open circuit	8 LHR OV	34	1.1
7 Power Amplifier: Open circuit	9 EBR	35	1.1
7 Power Amplifier: Open circuit	10 BLR	36	1.1
8 Power Amplifier: Short to ground	1 RHF IV	41	1.1
8 Power Amplifier: Short to ground	2 RHF OV	42	1.1
8 Power Amplifier: Short to ground	3 LHF IV	43	1.1
8 Power Amplifier: Short to ground	4 LHF OV	44	1.1
8 Power Amplifier: Short to ground	5 RHR IV	45	1.1
8 Power Amplifier: Short to ground	6 RHR OV	46	1.1
8 Power Amplifier: Short to ground	7 LHR IV	47	1.1
8 Power Amplifier: Short to ground	8 LHR OV	48	1.1
8 Power Amplifier: Short to ground	9 EBR	49	1.1
8 Power Amplifier: Short to ground	10 BLR	50	1.1
9 Inlet Valve Actuation Time	1 RHF	80	2.1 / 2.4 / 2.5/ 1.1
9 Inlet Valve Actuation Time	2 LHR	81	2.1 / 2.4 / 2.5/ 1.1
9 Inlet Valve Actuation Time	3 LHF	82	2.1 / 2.4 / 2.5/ 1.1
9 Inlet Valve Actuation Time	4 RHR	83	2.1 / 2.4 / 2.5/ 1.1
10 Pump Motor	1 pm monitor voltage unexp. high	67	1.1
10 Pump Motor	2 pm monitor voltage unexp. low	68	6.1
10 Pump Motor	3 motor does not turn	69	6.3
10 Pump Motor	4 no pm supply voltage	70	6.2
10 Pump Motor	5 pm relay does not switch on	71	1.1
10 Pump Motor	6 pm relay does not switch off	72	1.1
11 J1939	1 Internal	77	1.1
11 J1939	2 bus failure	78	8.1
11 J1939	3 message failure	79	8.2
12 Pole Wheel	1 RHF	84	2.4
12 Pole Wheel	2 LHR	85	2.4

fault code (1st digit)	fault code (2nd digit)	Fault number	Repair Instruction
12 Pole Wheel	3 LHF	86	2.4
12 Pole Wheel	4 RHR	87	2.4
13 Brake Chatter	1 RHF	90	2.7
13 Brake Chatter	2 LHR	91	2.7
13 Brake Chatter	3 LHF	92	2.7
13 Brake Chatter	4 RHR	93	2.7
14 System	1 valve relay can't switch off	55	1.1
14 System	2 valve relay can't switch on	56	11.1
14 System	3 reference ground connection	57	11.2
14 System	5 ABS warning light bulb	59	12.1
14 System	6 brake warning light bulb	60	13.1
14 System	7 High Voltage	61	11.3
14 System	8 Low Voltage	62	11.4
14 System	9 Clamp	88	1.1
14 System	10 Pull Up Down	89	1.1
14 System	11 Internal Error	0	1.1

* Refer to 88 page about "Repair Instruction".

- * An abbreviation
- RHF : Right Hand Front
- LHR : Left Hand Rear
- LHF : Left Hand Front
- RHR : Right Hand Rear
- IV : Inlet Valve
- OV : Outlet Valve
- EBR : Endurance Brake Relay(Exhaust Brake Relay)
- BLR : Brake Light Relay
- PM : Pump Motor

DTC Troubleshooting

A:enabled

B:disabled

C:Selective switched off

D:temporary selective switched off

E:Selective switch off only during cycling

F:Control functions permanently disabled at this wheel

end

* Refer to 88 page about "Repair Instruction".

System reaction	SPN	SID	FMI	Repair	General act - ions	ABS	EBD	Brake	ABS
Main controller, safety cont- roller	254	254	12	1.1	brake valve power supply switched off	В	В	ON	ON
Sensor front right									
Airgap	2	2	1	2.1 / 2.4		С	А	OFF	ON
Impedance	2	2	5	2.5		С	А	OFF	ON
Pole wheel	2	2	7	2.4		С	А	OFF	ON
No trigger at all	2	2	8	2.1 / 2.3 / 2.4 / 2.5 / 2.6		С	A	OFF	ON
Inlet valve actuation time not plausible (75 % switch on time within 5 minutes)	254	254	9	2.1 / 2.4 / 2.5 / 1.1		С	A	OFF	ON
Brake chatter	2	2	11	2.7		D	A	OFF	ON(Only durin- g cycling)
Tire combination	2	2	13	2.2		С	А	OFF	ON
Sensor rear left									
Airgap	3	3	1	2.1 / 2.4	take over sp-	С	А	OFF	ON
Impedance	3	3	5	2.5	eed from oth-	С	А	OFF	ON
Pole wheel	3	3	7	2.4		С	А	OFF	ON
No trigger at all	3	3	8	2.1 / 2.3 / 2.4 / 2.5 / 2.6		С	A	OFF	ON
Inlet valve actuation time not plausible (75 % switch on time within 5 minutes)	254	254	9	2.1 / 2.4 / 2.5 / 1.1		С	A	OFF	ON
Brake chatter	3	3	11	2.7		D	A	OFF	ON(Only durin- g cycling)

BR-84

Brake System

System reaction	SPN	SID	FMI	Repair	General act - ions	ABS	EBD	Brake	ABS
Tire combination	3	3	13	2.2	take over sp- eed from oth- er rear wheel	С	A	OFF	ON
Sensor front left					•			·	
Airgap	1	1	1	2.1 / 2.4		С	А	OFF	ON
Impedance	1	1	5	2.5		С	А	OFF	ON
Pole wheel	1	1	7	2.4		С	А	OFF	ON
No trigger at all	1	1	8	2.1 / 2.3 / 2.4 / 2.5 / 2.6		С	A	OFF	ON
Inlet valve actuation time not plausible (75 % switch on time within 5 minutes)	254	254	9	2.1 / 2.4 / 2.5 / 1.1		С	A	OFF	ON
Brake chatter	1	1	11	2.7		D	A	OFF	ON(Only durin- g cycling)
Tire combination	1	1	13	2.2		С	A	OFF	ON
Sensor rear right	•		•	•	•			•	•
Airgap	4	4	1	2.1 / 2.4	take over sp-	С	А	OFF	ON
Impedance	4	4	5	2.5	eed from oth-	С	А	OFF	ON
Pole wheel	4	4	7	2.4		С	А	OFF	ON
No trigger at all	4	4	8	2.1 / 2.3 / 2.4 / 2.5 / 2.6		С	A	OFF	ON
Inlet valve actuation time not plausible (75 % switch on time within 5 minutes)	254	254	9	2.1 / 2.4 / 2.5 / 1.1		С	A	OFF	ON
Brake chatter	4	4	11	2.7		D	A	OFF	ON(Only durin- g cycling)
Tire combination	4	4	13	2.2	take over sp- eed from oth- er rear wheel	С	A	OFF	ON
Power amp. inlet valve front	right				-				
Shorted to ubat	43	43	3	1.1	brake valve power supply switched off	В	В	OFF	ON
Open circuit	43	43	5			С	А	OFF	ON
Shorted to ground	43	43	6			С	А	OFF	ON
Power amp. outlet valve from	t right	t							

ABS

System reaction	SPN	SID	FMI	Repair	General act - ions	ABS	EBD	Brake	ABS
Shorted to ubat	49	49	3	1.1	brake valve power supply switched off	В	В	OFF	ON
Open circuit	49	49	5			С	А	OFF	ON
Shorted to ground	49	49	6			С	А	OFF	ON
Power amp. inlet valve front	left				•				
Shorted to ubat	42	42	3	1.1	brake valve power supply switched off	В	В	OFF	ON
Open circuit	42	42	5			С	А	OFF	ON
Shorted to ground	42	42	6			С	А	OFF	ON
Power amp. outlet valve from	t left							-	
Shorted to ubat	48	48	3	1.1	brake valve power supply switched off	В	В	OFF	ON
Open circuit	48	48	5			С	А	OFF	ON
Shorted to ground	48	48	6			С	А	OFF	ON
Power amp. inlet valve rear I	eft						-	-	-
Shorted to ubat	44	44	3	1.1	brake valve power supply switched off	В	В	OFF	ON
Open circuit	44	44	5			С	В	OFF	ON
Shorted to ground	44	44	6			С	В	OFF	ON
Power amp. outlet valve rear	left	•		•	•				
Shorted to ubat	50	50	3	1.1	brake valve power supply switched off	В	В	OFF	ON
Open circuit	50	50	5			С	В	OFF	ON
Shorted to ground	50	50	6			С	В	OFF	ON
Power amp. inlet valve rear r	ight			•	•				
Shorted to ubat	45	45	3	1.1	brake valve power supply switched off	В	В	OFF	ON
Open circuit	45	45	5			С	В	OFF	ON
Shorted to ground	45	45	6			С	В	OFF	ON
Power amp. outlet valve rear	right								

BR-86

Brake System

System reaction	SPN	SID	FMI	Repair	General act - ions	ABS	EBD	Brake	ABS
Shorted to ubat	51	51	3	1.1	brake valve power supply switched off	В	В	OFF	ON
Open circuit	51	51	5			С	В	OFF	ON
Shorted to ground	51	51	6			С	В	OFF	ON
Power amp. endurance brake	e relay								
Shorted to ubat	13	13	3	15.1		A	А	OFF	ON
Open circuit	13	13	5	15.2		А	А	OFF	ON
Shorted to ground	13	13	6	15.3		А	А	OFF	ON
Internal valve relay (provides	s supp	ly vol	tage f	or ABS pressu	re control valv	ves)		-	-
Can't switch off	30	30	3	1.1		В	В	ON	ON
Valve supply voltage missing or can't switch on	30	30	4	11.1		В	В	ON	ON
ABS warning light relay (if av- ailable)	1438	23	5	12.1		A	A	ON	-
Brake warning light relay (if a- vailable)	1439	101	5	13.1		A	A	-	ON
ECU main ground or referenc- e ground connection	98	98	2	11.2		В	В	ON	ON
High voltage (>17V for 12V-E- CU, >32V for 24V ECU) if cor- responding parameter is set.	251	251	3	11.3		A	A	ON	ON
Pump motor	•		•						
Pump motor does operate wh- en not expected.	2581	54	3	6.4		В	A	OFF	ON
Pump motor does not switch on.	2581	54	4	6.4		В	A	OFF	ON
Supply voltage for pump mot- or missing	2581	54	5			В	A	OFF	ON
Pump motor does not turn.	2581	54	7	1.1		В	А	OFF	ON
Relay voltage missing	2581	54	12	1.1		В	A	OFF	ON
J1939 communication									
BUS error	231	231	5	8.1		Α	Α	OFF	ON
Internal error	231	231	12	1.1		Α	Α	OFF	ON
Message time out(J1939)									

ABS

System reaction	SPN	SID	FMI	Repair	General act - ions	ABS	EBD	Brake	ABS
Engine retarder if configured	231	231	9	8.2		А	А	OFF	ON
Driveline retarder if configured									OFF
Exhaust retarder if configured									-
Engine ECU, engine hours (E- H_R) if configured									-

Multiple failures

System reaction	SPN	SID	FMI	Repair	General act - ions	ABS	EBD	Brake Warning Lamp	ABS
Sensor failures at both rear axle wheel ends	According to DTC codes		Refer to repair instructions of DTC.		В	В	ON	ON	
Sensor failures at both fron - t axle wheel ends	Accor DTC (According to DTC codes		Refer to repair instructions of DTC.		В	В	ON	ON
Power amp. failures on bot- h rear axle wheel ends	According to DTC codes		Refer to repair instructions of DTC.		В	В	ON	ON	
More than 100 sensor faults on the same wheel	Accor DTC (ding to)	Refer to repair instructions of DTC.		F	F	OFF	ON

Special system conditions

System reaction	General actions	ABS	EBD		ABS
Sensor failure detected during the last drive cycle		disabled, until all whe- el speeds passed se- nsor test	enabled	OFF	ON, until all wheel speeds passed se- nsor test
Low voltage	See repair instru- ction 11.4	Stays enabled if ABS is currently cycling. Future ABS cycles wi- Il be disabled for the duration of the low vo- Itage condition.	enabled	OFF	ON

Repair Instruction

R.I. Number	R.I. Sub- Number	Instruction
1		ECU
	1	Replace ECU.
2		Sensor / Tone ring combination
	1	Check airgap (range 0.2 -1.7 mm). Check bearing play and tone ring run out. Eliminate root cause for airgap extension and push s- ensor back in afterwards. Check tone ring for damage (missing teeth, corrosion). Replace tone ring if necessary.
	2	Check tire size is within released range. Check number of teeth on tone ring.
	3	Check J1939 communication with engine controller.[1]
	4	Check tone ring for damage/missing teeth/corrosion. Replace tone ring if necessary.
	5	Check sensor impedance and sensor wiring and connectors for intermittent contact. Replace sensor and/or sensor wiring if necessary.
	6	Check sensor installation. Check airgap and push sensor back in afterwards.
	7	Check foundation brakes; condition may occur even without system failure
6		Pump Motor
	1	If pump motor runs permanently -> 1.1. If not, -> 6.3.
	2	Check wiring and connections of the pump motor supply voltage. Check pump motor fuse. Use break-out-box. Without ECU the pump motor supply voltage (pin 16/31) has to be measured. The voltage level shall be equivalent to battery voltage.
	3	Replace HCU.
8		J1939-Interface
	1	Check electrical system of J1939 bus (connections, wiring).
	2	Check J1939 devices (Retarder, engine ECU).
11		Supply Voltage, Ground connection
	1	Check valve supply voltage fuse and wiring. Check Pin 17/31. The voltage level shall be equivalent to battery voltage. If this fails -> 1.1
	2	Check wiring and connectors of the ECU ground connections. Check wiring and connectors of reference ground. Open ground connections and reassemble.
	3	Supply voltage too high. Check alternator and battery.
	4	Supply voltage too low. Check alternator and battery.
12		ABS-Warning Lamp relay

ABS

R.I. Number	R.I. Sub- Number	Instruction
	1	Check wiring and connections of the ABS warning lamp relay. Replace relay if necessary. Use break-out-box. Without ECU the voltage has to be measured. The voltage level shall be equivalent to battery v- oltage. Current-measurement with Pin 21/31 short to battery voltage.
13		Brake-Warning Lamp relay
	1	Check wiring and connections of the brake warning lamp relay. Replace relay if necessary. Use break-out-box. Without ECU the voltage has to be measured. The voltage level shall be equivalent to battery v- oltage. Current-measurement with Pin 20/31 short to Ubat.
15		Endurance Brake Relay (EBR)
	1	Shorted to Ubat. Check wiring and connections of the EBR. Replace EBR if necessary. If furthe- r failure occurs -> 1.1.
	2	Open circuit. Check wiring and connections of the EBR. Replace EBR if necessary. If further fa- ilure occurs -> 1.1.
	3	Shorted to Ground. Check wiring and connections of the EBR. Replace EBR if necessary. If further failure occurs $-> 1.1$.

[1] Valid for vehicles with J1939 interface only

CONNECTOR CONFIGURATIONS

Count from the pin number at the end of each row, identify pin assembly to measure. Connector view shows the back of the connector.

PIN #	Circuit Label	PIN #	Circuit Label
1	Ignition 24V	16	Pump Motor Supply 24v+
2	DBR Relay (optional)	17	Solenoid Valve Supply 24v+
3	Not Used	18	Pump Motor Ground -Gnd
4	Not Used	19	Solenoid Valve Ground -Gnd
5	Not Used	20	Brake Warning Lamp Relay
6	Reference Ground	21	ABS Warning Lamp Relay
7	Not Used	22	Rear Right Wheel Speed Sensor
8	Not Used	23	Rear Left Wheel Speed Sensor
9	Not Used	24	Front Left Wheel Speed Sensor
10	Not Used	25	Front Right Wheel Speed Sensor
11	Not Used	26	ISO14230 (KWP2000)
12	Not Used	27	Rear Right Wheel Speed Sensor
13	Not Used	28	Rear Left Wheel Speed Sensor
14	J1939 + High - (optional)	29	Front Left Wheel Speed Sensor
15	J1939 - Low - (optional)	30	Front Right Wheel Speed Sensor
		31	Not Used

SUDBR9011L

SUDBR9012L

FULL CIRCUIT DIAGRAM

INSPECTION Standard Testing

Test Equipment: Volt-Ohm Meter (VOM)

Use of a VOM with automatic polarity sensing is recommended. This eliminates the concern of the polarity of the meter leads during voltage measurements.

System Requirements and Component Tests Tire Size Range

For correct hydraulic ABS operation, front and rear tire sizes must be within 16% of each other.

Calculate the tire size with the following equation:

% Difference = (RPM Steer/RPM Drive)-1 x 100

* RPM = tire revolutions per mile

When troubleshooting or testing the ABS system, do not damage the connector terminals. Damaged connector terminals may cause system malfunction.

Voltage Check

Voltage must be between 20 and 32 volts for the 24-volt hydraulic ABS to function correctly.

Check voltage as follows.

- 1. Turn ignition ON.
- 2. Check for the correct voltage.
 - Pins 16 to 18
 - Pins 17 to 19
 - Pins 1 to 6

Standard Component Testing

ABS Indicator Lamp

If the ABS indicator lamp does not come on after the ignition is turned on, or it comes on but does not go out after 2.5 seconds, check all ABS fuses or circuit breakers and replace if necessary.

Check the wiring to the ABS diagnostic switch and the indicator lamp and repair or replace the wiring as required. When checking the indicator lamp, follow these steps:

- 1. Check voltage potential at the lamp socket.
- 2. Check continuity of the wires to the socket.
- 3. Replace the bulb.

Sensor Adjustment

On steering axles, the sensor is typically accessible on the in-board side of the steering knuckle.

On drive axles, the sensor is typically accessible on the in-board side of the rear axle spindle.

To adjust the sensor, push the sensor in until it contacts the tooth wheel.

- * Do not pry or push sensors with sharp objects.
- * Sensors will self-adjust during wheel rotation.

WNOTICE

No gap is allowable at installation. During normal operation, a gap not to exceed 0.04-inch(1mm) is allowable.

Sensor Output Voltage Test

Sensor output voltage must be at least 0.2 volt AC at 30 rpm. Test the sensor output voltage as follows:

- 1. Turn ignition OFF.
- 2. Disconnect the ECU to measure voltage at the pins on the ECU connector.

WARNING

Park the vehicle on a level surface. Block the wheels to prevent the vehicle from moving. Support the vehicle with safety stands. Do not work under a vehicle supported only by jacks. Jacks can slip and fall over. Serious personal injury and damage to components can result.

- 3. Place blocks under the front and rear tires to stop the vehicle from moving.
- 4. Raise the vehicle off the ground. Place safety stands under the axle.
- 5. Rotate the wheel by hand at 30 rpm (1/2 revolution per second).
- Measure the voltage at the pins indicated in Table C. Voltage tolerance is ≥0.2 volts alternating current (VAC).

Table C: Sensor Check Pins

Sensor	HABS E Version ECU	
	31 Pin Harness	
Left front	Pin 24 and Pin 29	
Right front	Pin 25 and Pin 30	
Left rear	Pin 23 and Pin 28	
Right rear	Pin 22 and Pin 27	

Sensor Resistance

The sensor circuit resistance must be between 830 and 2,100 ohms. Measure resistance at the sensor

connector, or at the pins on the ECU connector, as follows.

- 1. Turn ignition OFF.
- 2. To measure resistance at the pins on ECU connector, disconnect the ECU connector from the ECU.

To measure resistance at the sensor connector, disconnect the sensor from the sensor extension cable.

3. Measure output at the pins indicated in Table C.

If measurement is not between 830 and 2,100 ohms, replace the sensor.

ADJUSTMENT

Brake Bleeding Procedures

General

The following brake bleeding methods explain how to bleed the hydraulic ABS modulator assembly during installation, or in the event of air in the brake system. There are instructions for both pressure and manual bleeding procedures.

These instructions include the procedure for bleeding both the master cylinder and the brake system. In some cases, for example, if you are replacing only the modulator assembly, it may not be necessary to bleed the master cylinder.

MOTICE

The modulator assembly must be handled with appropriate care and should not be exposed to excessive impact or compressed air at the hydraulic ports prior to assembly.

Failure to bleed the system whenever any hydraulic system fitting is loosened or disconnected will allow air to remain in the system. This will prevent the hydraulic pressure in the brake system from rising enough to apply the brakes correctly.

This will cause the stopping distance to increase and can result in serious personal injury.

Correctly discard hydraulic brake fluid that is removed from the brake system. Hydraulic brake fluid that is removed can be contaminated and can cause damage, loss of braking and serious personal injury.

Use only the type of hydraulic brake fluid specified by the equipment manufacturer. Do not use or mix different types of hydraulic brake fluid. The wrong hydraulic brake fluid will damage the rubber parts of the brake caliper and can cause damage, loss of braking and serious personal injury.

MOTICE

Use DOT 3 or DOT 4 hydraulic brake fluid. Refer to the vehicle specifications to determine which fluid to use.

Hydraulic brake fluid is a caustic substance. Contact with hydraulic brake fluid can cause skin irritation. Do not let hydraulic brake fluid touch any painted surfaces, as it will remove the paint. Hydraulic brake fluid may also damage certain non-metal surfaces. Do not let fluid get on brake pads, shoes, rotors or discs.

1. Fill up the brake oil tank with the brake oil at the maximum level. During the air bleeding, if the level is lowered, refill the brake oil.

Be careful that the brake oil does not drop on the painted surface. If the brake oil contacts the painted surface, immediately wash it by water.

2. Connecting an end of transparent vinyl tubes at the air breather of the front wheel cylinder and the rear wheel cylinder, put the other end of the tubes into the transparent container having the brake oil.

KMTBR5518A

3. Step on the brake pedal several times. Pressing the brake pedal at half, loosen the air bleeder screw to evacuate the air with the brake oil.

And then, pressing the pedal until it reaches to the floor, tighten the air bleeder screw. Release the pedal.

There procedures should be repeated until any air bubble is not shown in the brake oil.

KMTBR5519A

KMTBR5520A

4. Tighten the bleeder screw.

Tightening Torque for the bleeder Screw Front: 6.9~8.8Nm(0.7~0.9kgf.m, 5.1~6.5lb-ft) Rear : 6.9~8.8Nm(0.7~0.9kgf.m, 5.1~6.5lb-ft)

ABS Modulator

REMOVAL

The modulator assembly contains hydraulic brake fluid, a caustic substance. Remove the valve carefully so that fluid does not leak and cause skin irritation or damage to components.

If there is interference, the entire bracket and valve assembly can be removed.

- 1. Apply the parking brakes. Block the front and rear tires to prevent vehicle movement.
- 2. Place a container under the modulator assembly to catch leaking brake fluid.
- 3. Disconnect the electrical harness connector from the modulator assembly.
- 4. Mark the six brake lines for ease of installation. Disconnect the lines from the modulator assembly.
- 5. Remove the three mounting cap screws and washers that attach the modulator assembly to the bracket.

MOTICE

Whenever any hydraulic system fitting is loosened or disconnected, the entire system must be bled to remove any air that may have entered. Refer to "Brake Bleeding Procedures" in this section.

- 6. Remove the modulator assembly after disconnect the ECU.
- 7. Use a 4 mm Allen wrench to loosen and remove the four mounting screws that attach the ECU module to the modulator valve.
- 8. Carefully remove the ECU by lifting straight out. To avoid damage, do not twist the ECU during removal.

INSTALLATION

- Position the old ECU onto the new modulator valve. Apply gentle pressure to seat the ECU. Motor connector must achieve full depth onto the housing. The gap between the modulator and the ECU must not exceed 0.08-inch (2 mm).
- Use a 4 mm Allen wrench to tighten the four mounting screws that attach the ECU to the modulator. Tighten to 1.5 Nm(0.16 kgf.m , 1.17 lb-ft).
 Do not exceed this torque. The metal sleeves on the ECU housing must rest flat on the body of the modulator.
- When the ECU is correctly installed with the metal sleeves flat on the modulator, tighten the bolts to 2.5~3.5 Nm(0.25~0.35 kgf.m , 1.8~2.6 lb-ft).
- 4. Position the modulator assembly in place on the vehicle.
- Tighten the three mounting nuts to 22 Nm(2.2 kgf.m , 16.2 lb-ft).
- 6. Connect the electrical harnesses to the modulator assembly.
- 7. Connect and tighten the brake line connections.
- 8. Bleed the brake system, per the following instructions.

Wheel Speed Sensor

DESCRIPTION

Sensor Lube Specification

WABCO specifications call for a sensor lubricant with the following characteristics.

Lube must be mineral oil-based and contain molydisulfide. It should have excellent anti-corrosion and adhesion characteristics and be capable of continuous function in a temperature range of -40° to 300° F (-40° to 150° C).

REPLACEMENT

FRONT AXLE

Removal

WARNING

To prevent serious eye injury, always wear safe eye protection when you perform vehicle maintenance or service.

Park the vehicle on a level surface. Block the wheels to prevent the vehicle from moving. Support the vehicle with safety stands. Do not work under a vehicle supported only by jacks. Jacks can slip and fall over. Serious personal injury and damage to components can result.

To avoid damage to the electrical system or HABS components, when welding on a HABS-equipped vehicle disconnect the power connector from the ECU.

1. Park the vehicle on a level surface. Apply the parking brakes.

Block the rear tires to prevent the vehicle from moving.

If necessary, raise the front tires off the ground. Place safety stands under the axle.

- 2. Disconnect the fasteners that hold the sensor cable to other components.
- 3. Disconnect the sensor cable from the chassis harness.
- 4. Remove the sensor from the sensor holder. Twist and pull the sensor to remove it from the sensor bracket. Do not pull on the cable.

Installation

- 1. Connect the sensor cable to the chassis harness.
- 2. Install the fasteners used to hold the sensor cable in place.
- 3. Apply a WABCO-recommended lubricant to the sensor spring clip and sensor.
- 4. Install the sensor spring clip. Verify that the spring clip tabs are on the inboard side of the vehicle.
- 5. With the tabs on the inboard side, push the sensor spring clip into the bushing in the steering knuckle until the clip stops.
- 6. Push the sensor completely into the sensor spring clip until it contacts the tooth wheel.
- Fasten the sensor cable every 12 inches(305mm). Correctly bundle and store any excess cable in the sub-frame.
- 8. Remove the blocks and safety stands.
- 9. Perform a voltage output check to ensure correct installation.

REAR AXLE

Removal

- 1. Apply the parking brake. Block the front tires to prevent vehicle movement.
- 2. Raise the rear tires off the ground. Place safety stands under the axle.
- 3. If the rear tire must be removed to gain access to the sensor, release the parking brake to release the brake shoe.

Remove the wheel and tire assembly from the axle.

- 4. Remove the sensor from the mounting block. Use a twisting motion if necessary. Do not pull on the cable.
- 5. Disconnect the sensor cable from the chassis harness.
- 6. Remove the sensor cable from any cable clamps or clips.
- 7. Remove the sensor spring clip from the sensor bracket.

Installation

- 1. Connect the new sensor cable to the chassis harness.
- 2. Press the sensor spring clip into the sensor bracket, located on the rear axle, until it stops. Verify that the tabs are on the inboard side.
- 3. Apply a WABCO-recommended lubricant to the sensor.
- 4. Push the sensor completely into the spring clip until it contacts the tooth wheel.
- 5. Reattach the sensor cable to the cable clamps or clips.
- 6. Fasten the sensor cable every 12 inches(305mm). Correctly bundle and store excess cable in the sub-frame.
- 7. Replace the tire and remove the safety stands. Lower the vehicle and remove the blocks from the front tires.
- 8. Perform a voltage output check to ensure correct installation.

ABS Control Module(ABS ECU)

REMOVAL

To prevent serious eye injury, always wear safe eye protection when you perform vehicle maintenance or service.

Hydraulic brake fluid is a caustic substance. Contact with the hydraulic brake fluid can cause skin irritation. Do not let hydraulic brake fluid touch any painted surfaces, as it will remove the paint. Hydraulic brake fluid may also damage certain non-metal surfaces. Do not let fluid contact brake pads, shoes, rotors or discs.

NOTICE

Do not open the ECU. Opening the ECU to gain access to the internal components will void the warranty.

MOTICE

The following general guidelines are provided to facilitate the safe removal of the ECU module from the modulator assembly.

* It is not necessary to remove the entire modulator to replace the Electronic Control Unit (ECU).

* When only the ECU is replaced, bleeding the system is not necessary.

- 1. Park the vehicle on a level surface. For vehicles with manual parking brakes, apply the parking brakes.
- 2. Block the front and rear tires to prevent vehicle movement.
- 3. Disconnect the battery.
- 4. Use a clean rag to carefully wipe the surface of the modulator and the surrounding area.
- 5. Open the latches on the 31-pin harness attached to the ECU.

After the latch is released, remove the connector from the ECU.

SUDBRA502L

- 6. Use a 4 mm allen wrench to loosen and remove the four mounting screws that attach the ECU module to the modulator valve.
- Carefully remove the ECU by lifting straight out. To avoid damage, do not twist the ECU during removal. Determine the warranty status of the ECU. If the ECU is under warranty, return it to HMC. If it is not under warranty, discard the used ECU.
- 8. Use a clean rag to carefully clean the area around the valves formerly covered by the ECU.

INSTALLATION

Excessive force in positioning the ECU onto the modulator will damage the ECU housing. Do not force the ECU into position.

Use a gentle, even pressure when positioning the ECU.

- 1. Position the ECU onto the modulator valve. Apply gentle pressure to seat the ECU. Motor connectors must achieve full depth into the housing. The gap between the modulator and ECU must not exceed 0.08-inch (2 mm).
- Use a 4 mm Allen wrench to tighten the four mounting screws that attach the ECU to the modulator. Tighten to 1.5 Nm(0.16 kgf.m , 1.17 lb-ft).
 Do not exceed this torque. The metal sleeves on the ECU housing must rest flat on the body of the modulator.
- 3. When the ECU is correctly installed with the metal sleeves flat on the modulator, tighten the bolts to 2.5~3.5 Nm(0.25~0.35 kgf.m , 1.8~2.6 lb-ft).

WARNING

Electrical connectors must be correctly installed with the latch pushed in to lock the connector. Failure to do so may allow the connectors to come loose or disconnect resulting in loss of ABS function.

- 4. Attach the 31-pin harness connector to the ECU.
- 5. Connect the battery.

SCHEMATIC DIAGRAMS

ABS CONTROL SYSTEM (1) - HD65, 72, 78

SUDBR9026L

BR-100

ABS CONTROL SYSTEM (2) - HD65, 72, 78

SUDBR9027L

ABS CONTROL SYSTEM (3) - HD65, 72, 78

SUDBR9028L

BR-102

Brake System

ABS CONTROL SYSTEM (4) - HD65, 72, 78

SUDBR9029L

ABS CONTROL SYSTEM (5) - HD65, 72, 78

SUDBR9030L

BR-104

DTC Chart

Number	DTC	Description	
1	0000	Internal error	
2	0001	Sensor Right Hand Front(Airgap)	
3	0002	Sensor Left Hand Rear(Airgap)	
4	0003	Sensor Left Hand Front(Airgap)	
5	0004	Sensor Right Hand Rear(Airgap)	
6	0009	Input Valve Right Hand Front(Short To Ubatt/Uvent)	
7	000A	Output Valve Right Hand Front(Short To Ubatt/Uvent)	
8	000B	Input Valve Left Hand Front(Short To Ubatt/Uvent)	
9	000C	Output Valve Left Hand Front(Short To Ubatt/Uvent)	
10	000D	Input Valve Right Hand Rear(Short To Ubatt/Uvent)	
11	000E	Output Valve Right Hand Rear(Short To Ubatt/Uvent)	
12	000F	Input Valve Left Hand Rear(Short To Ubatt/Uvent)	
13	0010	Output Valve Left Hand Rear(Short To Ubatt/Uvent)	
14	0011	Endurance Brake Relay(Short To Ubatt/Uvent)	
15	0017	Sensor Right Hand Front(Impedance)	
16	0018	Sensor Left Hand Rear(Impedance)	
17	0019	Sensor Left Hand Front(Impedance)	
18	001A	Sensor Right Hand Rear(Impedance)	
19	001B	Input Valve Right Hand Front(Open Circuit)	
20	001C	Output Valve Right Hand Front(Open Circuit)	
21	001D	Input Valve Left Hand Front(Open Circuit)	
22	001E	Output Valve Left Hand Front(Open Circuit)	
23	001F	Input Valve Right Hand Rear(Open Circuit)	
24	0020	Output Valve Right Hand Rear(Open Circuit)	
25	0021	Input Valve Left Hand Rear(Open Circuit)	
26	0022	Output Valve Left Hand Rear(Open Circuit)	
27	0023	Endurance Brake Relay(Open Circuit)	
28	0024	Brake Light Relay(Open Circuit)	
29	0029	Input Valve Right Hand Front(Short To Ground)	
30	002A	Output Valve Right Hand Front(Short To Ground)	
31	002B	Input Valve Left Hand Front(Short To Ground)	
32	002C	Output Valve Left Hand Front(Short To Ground)	
33	002D	Input Valve Right Hand Rear(Short To Ground)	
34	002E	Output Valve Right Hand Rear(Short To Ground)	

Number	DTC	Description
35	002F	Input Valve Left Hand Rear(Short To Ground)
36	0030	Output Valve Left Hand Rear(Short To Ground)
37	0032	Endurance Brake Relay(Short To Ground)
38	0033	Brake Light Relay(Short To Ground)
39	0037	Valve Relay(Can't Switch Off)
40	0038	Valve Relay(Can't Switch On)
41	0039	Reference Ground Connection
42	003B	ABS Warning Light Bulb
43	003C	Brake Warning Light Bulb
44	003D	High Voltage
45	003F	Sensor Right Hand Front(Tire Combination)
46	0040	Sensor Left Hand Rear(Tire Combination)
47	0041	Sensor Left Hand Front(Tire Combination)
48	0042	Sensor Right Hand Rear(Tire Combination)
49	0043	Pump Motor Does Not Switch On
50	0044	Pump Motor Does Not Switch Off
51	0045	Pump Motor Does Not Turn
52	0046	Pump Motor Supply Voltage Missing
53	0047	Pump Motor Relay Voltage Missing
54	0049	Sensor Right Hand Front(No Trigger At All)
55	004A	Sensor Left Hand Rear(No Trigger At All)
56	004B	Sensor Left Hand Front(No Trigger At All)
57	004C	Sensor Right Hand Rear(No Trigger At All)
58	004D	J1939 Internal Error
59	004E	J1939 Bus
60	004F	J1939 Message
61	0050	Inlet Valve(Right Hand Front) Actuation Time Unplausible
62	0051	Inlet Valve(Left Hand Rear) Actuation Time Unplausible
63	0052	Inlet Valve(Left Hand Front) Actuation Time Unplausible
64	0053	Inlet Valve(Right Hand Rear) Actuation Time Unplausible
65	0054	Pole Wheel Right Hand Front(Cyclic Failure)
66	0055	Pole Wheel Left Hand Rear(Cyclic Failure)
67	0056	Pole Wheel Left Hand Front(Cyclic Failure)
68	0057	Pole Wheel Right Hand Rear(Cyclic Failure)
69	0058	Clamp Transistor Failure

BR-106

Brake System

Number	DTC	Description
70	0059	Pull Up Down Failure
71	005A	Sensor Right Hand Front(Signal Disturbed)
72	005B	Sensor Left Hand Rear(Signal Disturbed)
73	005C	Sensor Left Hand Front(Signal Disturbed)
74	005D	Sensor Right Hand Rear(Signal Disturbed)

SUDWAB9001L

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and failure memory circuit that memorizes any а malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

HECU continues to monitor the internal components, such as memory, input and output circuits. In case of an error during the operation of the control system, HECU determines whether it is a failure state and outputs a fail code.

DTC DETECTING CONDITION

ltem	Detecting Condition			Possible Cause
DTC Strategy	Signal monitoring			Replace ECU.
Enable Conditions	Ignition ON			
Threshold Value	When the HECU detects malfunction in the control system			
Diagnosis Time	Below 1,000 ms			
Fail Safe	Fuel Cut	No	ABS disabled	
	Fuel Limit	Yes		
	MIL	Yes		

MONITOR SCAN TOOL DATA

1. Connect scan tool to the self-diagnosis connector.

1.2. CURRENT DATA 08/22				
				-
×	ECU SUPPLY VOLTAGE	22.9	U	
×	WHEEL SPEED RHF	1.8	Km∕h	
×	WHEEL SPEED LHR	1.8	Km/h	
×	WHEEL SPEED LHF	1.8	Km⁄h	
×	WHEEL SPEED RHR	1.8	Km∕h	
×	DBR RELAY	OFF		
×	ABS WARNING LAMP	OFF		
×	BRAKE WARNING LAMP	OFF		
				1
	FIX PART TOT HEL	P LINE	REC	

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.

- 2. Turn the ignition ON.
- 3. Monitor the service data on the scan tool.

	1.2. CURRENT DAT	ľA 🛛	01 /22
×	SENSOR VOLTAGE RHF 2	2.2 L	, ■
×	SENSOR VOLTAGE LHR 2	2.2 (, .
×	SENSOR VOLTAGE LHF 2	2.2 U	ו ו
×	SENSOR VOLTAGE RHR 2	2.2 U	,
×	ECU SUPPLY VOLTAGE	22.7 (,
×	DBR RELAY	DFF	
×	ABS WARNING LAMP	OFF	
×	BRAKE WARNING LAMP	JFF	
			T
	FIX PART TOT HELP]	LINE	REC

SUDWAB9007L

3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.
ABS

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

▶ There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

SUDWAB9002L

Possible Cause

Check tone ring for

Check air gap. Check bearing play and tone ring run

out.

damage.

0001 Sensor Right Hand Front(Airgap)

COMPONENT LOCATION

GENERAL DESCRIPTION

DTC DETECTING CONDITION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

Fuel Limit

MIL

DTC DESCRIPTION

HECU continues to monitor the input signal from the wheel sensor. If the ABS control state changes abnormally when the sensor output voltage becomes low because the air gap in the front right wheel sensor is too big, HECU determines it as a failure state and outputs a fail code.

bled for concerned

wheel

ltem		Detecting Condition					
DTC Strategy	Signal monitoring	gnal monitoring					
Enable Conditions	Ignition ON	inition ON					
Threshold Value	Vehicle speed > 5.0 kp	/ehicle speed > 5.0 kph. Air gap $0.2 \sim 1.7$ mm					
Diagnosis Time	Below 1,000 ms	Below 1,000 ms					
Fail Safe	Euel Cut	No	ABS function disa-				

Yes

Yes

SPECIFICATION

Wheel sensor resistance	830 \sim 2,100 Ω (At 20 $^\circ \! \mathbb{C}$)		
Air gap	0.2 ~ 1.7 mm		

MONITOR SCAN TOOL DATA

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.

1.2. CURRENT	DATA	08/22
× SENSOR VOLTAGE RHF	4.2	U
× SENSOR VOLTAGE LHR	0.6	V
× SENSOR VOLTAGE LHF	0.6	v 🖕
× SENSOR VOLTAGE RHR	1.2	v -
× WHEEL SPEED RHF	10.6	Km/h
× WHEEL SPEED LHR	10.6	Km∕h
× WHEEL SPEED LHF	10.8	Km∕h
× WHEEL SPEED RHB	10.6	Km∕ h
		v
FIX PART TOT HELP	LINE	REC

5. Is the data measured within specification?

YES

► There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Terminal & Connector Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.

- 3. Drive the vehicle straight at a constant speed in the normal road surface.
- 4. Monitor the data "Wheel speed RHF" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

	1.2. CURRENT DATA	i 0 8/2	22
			•
×	SENSOR VOLTAGE RHF Ø.	8 V	
×	SENSOR VOLTAGE LHR 4.	7 V	
×	SENSOR VOLTAGE LHF Ø.	0 V	
×	SENSOR VOLTAGE RHR Ø.	7 V	
×	WHEEL SPEED RHF 21	0 Km/h	
×	WHEEL SPEED LHR 20	1.7 Km∕h	
×	WHEEL SPEED LHF 21	0 Km/h	
×	WHEEL SPEED RHR 20	1.9 Km∕h	
			Ŧ
	FIX PART TOT HELP LI	NE REC	

SUDWAB9008L

3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

Sensor Air Gap Inspection

- 1. Turn the ignition OFF.
- 2. Check the air gap between right hand front tone wheel and wheel sensor with a thickness gauge.
 - Specification: 0.2~1.7 mm
- 3. Is the value measured within specification?

YES

• Go to next procedure.

NO

▶ Repair it after checking wheel sensor installation condition and go to "Verification of Vehicle Repair" procedure.

▶ Repair or replace it after checking the condition of rotor and wheel bearing and go to "Verification of

BR-112

Vehicle Repair" procedure.

► Adjust it after checking the air gap between wheel sensor and rotor and go to "Verification of Vehicle Repair" procedure.

Right Hand Front Wheel Sensor Inspection

- 1. Turn the ignition OFF.
- 2. Disconnect the right hand front when sensor connector.
- 3. Measure the resistance between positive (+) and negative (-) of the right hand front wheel sensor (C30).

■ Specification: 830 ~ 2,100 Ω (At 20[°]C)

4. Is the resistance measured within specification?

YES

► After checking the HECU for contamination or damage, install a known-good HECU and check it good or not.

▶ Replace the HECU if the vehicle is normal condition and go to "Verification of Vehicle Repair" procedure.

NO

► Replace the sensor if the vehicle is normal after temporarily installing a known-good sensor and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

SUDWAB9048L

0002 Sensor Left Hand Rear(Airgap)

COMPONENT LOCATION

GENERAL DESCRIPTION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

DTC DESCRIPTION

HECU continues to monitor the input signal from the wheel sensor. If the ABS control state changes abnormally when the sensor output voltage becomes low because the air gap in the rear left wheel sensor is too big, HECU determines it as a failure state and outputs a fail code.

Item		Detecting Condition				
DTC Strategy	Signal monitoring	Signal monitoring				
Enable Conditions	Ignition ON	Ignition ON				
Threshold Value	Vehicle speed > 5.0 kph. Air gap $0.2 \sim 1.7$ mm					out.
Diagnosis Time	Below 1,000 ms					Check tone ring for
Fail Safe	Fuel Cut	No		ABS function dis	a-	damage.
	Fuel Limit	Yes		bled for concerne	d	
	MIL	Yes		wheel.		

SPECIFICATION

Wheel sensor resistance	830 ~ 2,100 Ω (At 20 °C)
Air gap	0.2 ~ 1.7 mm

MONITOR SCAN TOOL DATA

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.

		1.	2.	CUR	RENT	DAT	A	08/	22
× sei	NSOR	VOLT	AGE	RH	F	4	. Z	U	
× sei	ISOR	VOLT	AGE	LH	R	0	.6	V	
× sei	NSOR	VOLT	AGE	LH	F	0	. 6	V	
× sei	NSOR	VOLT	AGE	RH	R	1	.2	Ų	
× WH3	EEL	SPEED	RH	F		1	0.6	Km/h	
× WH3	EEL	SPEED	LH	R		1	0.6	Km∕h	
× WH3	EEL	SPEED	LH	F		1	0.8	Km∕h	
× WHI	EEL	SPEED	RH	R		1	0.6	Km∕h	
									Ŧ
FIS	<	PART	TO	T	HEL	P I	INE	REC]

5. Is the data measured within specification?

YES

- ▶ There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.
- ▶ Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Terminal & Connector Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

- 3. Drive the vehicle straight at a constant speed in the normal road surface.
- 4. Monitor the data "Wheel speed LHR" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

	1.2. CURRENT DA	AΤΑ	08/22
			•
×	SENSOR VOLTAGE RHF	0.8	U
×	SENSOR VOLTAGE LHR	4.7	V
×	SENSOR VOLTAGE LHF	0.0	V 🖕
×	SENSOR VOLTAGE RHR	0.7	v –
×	WHEEL SPEED RHF	21.0	Km∕h
×	WHEEL SPEED LHR	20.7	Km⁄h
×	WHEEL SPEED LHF	21.0	Km⁄h
×	WHEEL SPEED RHR	20.9	Km∕h
			T
	FIX PART TOT HELP	LINE	REC

SUDWAB9008L

► Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

Sensor Air Gap Inspection

- 1. Turn the ignition OFF.
- 2. Check the air gap between left hand rear tone wheel and wheel sensor with a thickness gauge.
 - Specification: 0.2~1.7 mm
- 3. Is the value measured within specification?

YES

▶ Go to next procedure.

NO

▶ Repair it after checking wheel sensor installation condition and go to "Verification of Vehicle Repair" procedure.

▶ Repair or replace it after checking the condition of rotor and wheel bearing and go to "Verification of Vehicle Repair" procedure.

► Adjust it after checking the air gap between wheel sensor and rotor and go to "Verification of Vehicle

Repair" procedure.

Left Hand Rear Wheel Sensor Inspection

- 1. Turn the ignition OFF.
- 2. Disconnect the left hand rear connector (C37).
- 3. Measure the resistance between terminal positive (+) and terminal negative (-) of the left hand rear wheel sensor (C37).
 - Specification: 830 \sim 2100 Ω (At 20 $^{\circ}$ C)
- 4. Is the resistance measured within specification?

YES

► After checking the HECU for contamination or damage, install a known-good HECU and check it good or not.

▶ Replace the HECU if the vehicle is normal condition and go to "Verification of Vehicle Repair" procedure.

NO

► Replace the sensor if the vehicle is normal after temporarily installing a known-good sensor and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

System OK

ABS

SUDWAB9049L

0003 Sensor Left Hand Front(Airgap)

COMPONENT LOCATION

GENERAL DESCRIPTION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

DTC DESCRIPTION

HECU continues to monitor the input signal from the wheel sensor. If the ABS control state changes abnormally when the sensor output voltage becomes low because the air gap in the front left wheel sensor is too big, HECU determines it as a failure state and outputs a fail code.

DTC DETECTING CONDITION	
-------------------------	--

ltem			Possible Cause				
DTC Strategy	Signal monitoring	•	Check air gap.				
Enable Conditions	Ignition ON		Check bearing play and tone ring run				
Threshold Value	Vehicle speed > 5.0 kpl	out. Check tone ring fo	out.				
Diagnosis Time	Below 1,000 ms						
Fail Safe	Fuel Cut	No	ABS function disa-		uanage.		
	Fuel Limit	Yes	bled for concerned	bled for concerned			
	MIL	Yes					

SPECIFICATION

Wheel sensor resistance	830 ~ 2,100 Ω (At 20 °C)
Air gap	0.2 ~ 1.7 mm

MONITOR SCAN TOOL DATA

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.

1.2. CURRENT	DATA	08/22
× SENSOR VOLTAGE RHF	4.2	U
× SENSOR VOLTAGE LHR	0.6	V
× SENSOR VOLTAGE LHF	0.6	v 🖕
× SENSOR VOLTAGE RHR	1.2	v -
× WHEEL SPEED RHF	10.6	Km/h
× WHEEL SPEED LHR	10.6	Km∕h
× WHEEL SPEED LHF	10.8	Km∕h
× WHEEL SPEED RHR	10.6	Km∕h
		T
FIX PART TOT HELF	P LINE	REC

5. Is the data measured within specification?

YES

- ► There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.
- ▶ Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Terminal & Connector Inspection" procedure.

- 3. Drive the vehicle straight at a constant speed in the normal road surface.
- 4. Monitor the data "Wheel speed LHF" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

		1.3	z. a	JRRENT	DATA	08/3	22
×	SENSO	R VOLT	AGE I	RHF	0.8	Ų	
×	SENSO	R VOLT	AGE I	LHR	4.7	V	
×	SENSO	R VOLT	AGE I	LHF	0.0	Ų	
×	SENSO	R VOLT	AGE I	RHR	0.7	V	
×	WHEEL	SPEED	RHF		21.0	Km∕h	
×	WHEEL	SPEED	LHR		20.7	Km/h	
×	WHEEL	SPEED	LHF		21.0	Km∕h	
×	WHEEL	SPEED	RHR		20.9	Km∕ h	
							Ŧ
	FIX	PART	TOT	HELI	P LINE	REC	

SUDWAB9008L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

► Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

Left Hand Front Wheel Sensor Inspection

- 1. Turn the ignition OFF.
- 2. Disconnect the left hand front connector (C31).
- Measure the resistance between terminal positive (+) and terminal negative (-) of the left hand front wheel sensor.
 - Specification: 830 ~ 2,100 Ω (At 20°C)
- 4. Is the resistance measured within specification?

YES

► After checking the HECU for contamination or damage, install a known-good HECU and check it good or not.

▶ Replace the HECU if the vehicle is normal condition and go to "Verification of Vehicle Repair" procedure.

NO

► Replace the sensor if the vehicle is normal after temporarily installing a known-good sensor and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9050L

0004 Sensor Right Hand Rear(Airgap)

COMPONENT LOCATION

GENERAL DESCRIPTION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

DTC DESCRIPTION

HECU continues to monitor the input signal from the wheel sensor. If the ABS control state changes abnormally when the sensor output voltage becomes low because the air gap in the Rear right wheel sensor is too big, HECU determines it as a failure state and outputs a fail code.

DTC DETECTING CONDITION

ltem	Detecting Condition				Possible Cause	
DTC Strategy	Signal monitoring	Signal monitoring				
Enable Conditions	litions Ignition ON					
Threshold Value	Vehicle speed > 5.0 kph. Air gap $0.2 \sim 1.7$ mm				out.	
Diagnosis Time	Below 1,000 ms			•	Check tone ring for	
Fail Safe	Fuel Cut	No	ABS function disa-	-]	uamage.	
	Fuel Limit	Yes	bled for concerned			
	MIL	Yes	Whiteh			

SPECIFICATION

Wheel sensor resistance	830 ~ 2,100 Ω (At 20 °C)	
Air gap	0.2 ~ 1.7 mm	

MONITOR SCAN TOOL DATA

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.

	1.2. CURRENT	DATA	08/22
			•
×	SENSOR VOLTAGE RHF	4.2	U
×	SENSOR VOLTAGE LHR	0.6	V
×	SENSOR VOLTAGE LHF	0.6	V 📕
×	SENSOR VOLTAGE RHR	1.2	v
×	WHEEL SPEED RHF	10.6	Km/h
×	WHEEL SPEED LHR	10.6	Km/h
×	WHEEL SPEED LHF	10.8	Km∕h
×	WHEEL SPEED RHR	10.6	Km∕ h
			v
	FIX PART TOT HELF	PLINE	REC

5. Is the data measured within specification?

YES

- ► There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.
- ▶ Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Terminal & Connector Inspection" procedure.

- 3. Drive the vehicle straight at a constant speed in the normal road surface.
- 4. Monitor the data "Wheel speed RHR" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

	1.2. CURRENT I	ATA	08/22
×	SENSOR VOLTAGE RHF	0.8	U
×	SENSOR VOLTAGE LHR	4.7	V I
×	SENSOR VOLTAGE LHF	0.0	V 📕
×	SENSOR VOLTAGE RHR	0.7	Ų –
×	WHEEL SPEED RHF	21.0	Km∕h
×	WHEEL SPEED LHR	20.7	Km∕h
×	WHEEL SPEED LHF	21.0	Km∕h
×	WHEEL SPEED RHR	20.9	Km∕h
			T
	FIX PART TOT HELP	LINE	REC

SUDWAB9008L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

► Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

Right hand rear Wheel Sensor Inspection

- 1. Turn the ignition OFF.
- 2. Disconnect the right hand rear connector (C36).
- 3. Measure the resistance between terminal positive (+) and terminal negative (-) of the right hand rear wheel sensor (C36).
 - Specification: 830 ~ 2100 Ω (At 20°C)
- 4. Is the resistance measured within specification?

YES

► After checking the HECU for contamination or damage, install a known-good HECU and check it good or not.

▶ Replace the HECU if the vehicle is normal condition and go to "Verification of Vehicle Repair" procedure.

NO

► Replace the sensor if the vehicle is normal after temporarily installing a known-good sensor and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

0009 Input Valve Right Hand Front(Short To Ubatt/Uvent)

COMPONENT LOCATION

SUDWAB9002L

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and failure memory circuit that memorizes any а malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring				Replace ECU.
Enable Conditions	Ignition ON				
Threshold Value	When the HECU detects malfunction in the control system				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL	Yes			

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test"

DUAL DI SPLAY					
	CURREN	IT DATA			
× INPUT VAI	VE RHF	OFF			
× OUTPUT VA	LVE RHF	OFF			
× INPUT VAI	VE LHF	OFF			
× OUTPUT VA	LVE LHF	OFF	•		
	ACTUAT I	ON TEST			
INLET VALV	E RIGHT-	HAND FRONT			
1 SECONI)S	SOUND CHECK			
KEY.ON / VEH.STOP ENG. STOP					
STRT	FIX	LINE			

4. Check the right hand front inlet valve for operation when activating the actuator.

■ Specification: Normal if the activating sound is heard.

	DUAL D	ISPLAY	
	CURREN	IT DATA	
\star INPUT VA	LVE RHF	ON	
× OUTPUT V	ALVE RHF	OFF	
* INPUT VA	LVE LHF	OFF	
× OUTPUT V	ALVE LHF	OFF	
5 	ACTUATI	ON TEST	
INLET VAL	VE RIGHT-	HAND FRONT	
1 SECON	IDS	SOUND CHECK	
KEY.ON 🗡	VEH.STOP	ENG. STOP	
STRT	FIX	LINE	

SUDWAB9009L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

► Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

Fig1) Right hand front inlet valve Actuation test at IG ON

5. Does the valve activate normally?

YES

► There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

► And go to "Verification of Vehicle Repair" procedure.

NO

NO

▶ Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

000A Output Valve Right Hand Front(Short To Ubatt/Uvent)

COMPONENT LOCATION

SUDWAB9002L

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and circuit that memorizes any а failure memory malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring	•	Replace ECU.		
Enable Conditions	Ignition ON				
Threshold Value	When the HECU detects malfunction in the control system				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL	Yes			

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test"

DUAL DISPLAY				
CURR	ENT DATA			
× INPUT VALVE RHF	OFF 🖌			
× OUTPUT VALVE RH	F OFF			
× INPUT VALVE LHF	OFF			
× OUTPUT VALVE LH	F OFF	r.		
ACTUA	TION TEST			
OUTLET VALVE RIG	HT-HAND FRONT			
1 SECONDS	SOUND CHECK			
KEY.ON / VEH.STO	P ENG. STOP			
STRT	LINE			

4. Check the right hand front outlet valve for operation when activating the actuator.

■ Specification: Normal if the activating sound is heard.

	DUAL DISPLAY				
	CL	JRREN	IT DATA		
×	INPUT VALVE I	SHF	OFF		
×	OUTPUT VALVE	RHF	ON		
×	INPUT VALVE I	LHF	OFF		
×	OUTPUT VALVE	LHF	OFF	T	
	AC)	(UAT I	ON TEST		
	OUTLET VALVE I	RI GHT	-HAND FRONT		
	1 SECONDS		SOUND CHECK		
	KEY.ON / VEH.S	STOP	ENG. STOP		
	STRT	FIX -	LINE		

SUDWAB9010L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

IG ON 5. Does the valve activate normally?

Fig1) Right hand front outlet valve Actuation test at

YES

▶ There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

And go to "Verification of Vehicle Repair" procedure.

NO

NO

ABS

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9049L

000B Input Valve Left Hand Front(Short To Ubatt/Uvent)

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and circuit that memorizes any failure memory а malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring			•	Replace ECU.
Enable Conditions	Ignition ON				
Threshold Value	When the HECU detects malfunction in the control system				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL	Yes			

heard.

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test"

	DUAL DISPLAY					
	CURR	ent data				
×	INPUT VALVE RHF	OFF 🔺				
×	OUTPUT VALVE RH	F OFF				
×	INPUT VALVE LHF	OFF				
×	OUTPUT VALVE LH	F OFF 🔻				
	ACTUA	TION TEST				
J	INLET VALVE LEFT	-Hand Front				
	1 SECONDS	SOUND CHECK				
1	KEY.ON / VEH.STO	P ENG. STOP				
	STRT	LINE				

when activating the actuator.

Specification: Normal if the activating sound is

4. Check the left hand front inlet valve for operation

	DUAL DISPLAY				
	CURR	ent data			
×	INPUT VALVE RHF	OFF 🔺			
×	OUTPUT VALVE RH	F OFF			
×	INPUT VALVE LHF	ON			
×	OUTPUT VALVE LH	F OFF 🔻			
	ACTUA	TION TEST			
]	INLET VALVE LEFT	-HAND FRONT			
	1 SECONDS	SOUND CHECK			
]	(EY.ON / VEH.STO	P ENG. STOP			
	STRT FIX	LINE			

SUDWAB9011L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

Fig1) Left hand front inlet valve Actuation test at IG $\ensuremath{\mathsf{ON}}$

5. Does the valve activate normally?

YES

► There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

And go to "Verification of Vehicle Repair" procedure.

NO

NO

▶ Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9049L

000C Output Valve Left Hand Front(Short To Ubatt/Uvent)

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and memory circuit that memorizes any а failure malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring				Replace ECU.
Enable Conditions	Ignition ON				
Threshold Value	When the HECU detects malfunction in the control system				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL	Yes			

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test"

	DUAL DISPLAY						
	CURRENT DATA						
×ı	INPUT	VALVE RHF			OFF		
× (DUTPL	JT VALVE RHI	F		OFF		
× I	INPUT	VALVE LHF			OFF		
×	DUTPL	IT VALVE LHI	5		OFF		
		ACTUA	1011	TES	Г		
OL	JTLEI	VALVE LEF	r-Hf	AND F	RONT		
1	L SE	CONDS	5	SOUND	CHECK		
KI	EY . ON	1 / VEH. STO	PI	ENG.	STOP		
5	STRT	FIX	I	LINE			

4. Check the left hand front outlet valve for operation when activating the actuator.

■ Specification: Normal if the activating sound is heard.

3	DUAL I	DISPLAY	
	CURRE	IT DATA	
× INPUT VA	LVE RHF	OFF	
× OUTPUT V	ALVE RHF	OFF	
× INPUT VAI	LVE LHF	OFF	
× OUTPUT V	ALVE LHF	ON	T
5	ACTUAT	ON TEST	
OUTLET VA	LVE LEFT.	-HAND FRONT	
1 SECON	DS	SOUND CHECK	
KEY.ON Z	VEH.STOP	ENG. STOP	
STRT	FIX	LINE	

SUDWAB9012L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

► Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

Fig1) Left hand front outlet valve Actuation test at IG ON

5. Does the valve activate normally?

YES

▶ There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

And go to "Verification of Vehicle Repair" procedure.

NO

NO

ABS

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9050L

000D Input Valve Right Hand Rear(Short To Ubatt/Uvent)

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and failure memory circuit that memorizes any а malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring				Replace ECU.
Enable Conditions	Ignition ON				
Threshold Value	When the HECU detect	When the HECU detects malfunction in the control system			
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL	Yes			

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test"

DUAL DISPLAY					
	CURRI	ENT DATA			
×	INPUT VALVE RHR	OFF 🔺			
×	× OUTPUT VALVE RHR OFF				
×	INPUT VALVE LHR	OFF 📕			
×	OUTPUT VALVE LHI	R OFF 🔻			
	ACTUA	TION TEST			
Ι	NLET VALVE RIGH?	-HAND REAR			
	1 SECONDS	SOUND CHECK			
К	EY.ON / VEH.STO	P ENG. STOP			
	STRT FIX	LINE			

4. Check the right hand rear inlet valve for operation when activating the actuator.

■ Specification: Normal if the activating sound is heard.

	DUAL DISPLAY					
	CURRI	ENT DATA				
×	INPUT VALVE RHR	ON d	4			
×	OUTPUT VALVE RHI	R OFF				
×	INPUT VALVE LHR	OFF				
×	OUTPUT VALVE LHI	R OFF	T.			
	ACTUAI	TION TEST				
]	INLET VALVE RIGHT	-HAND REAR				
	1 SECONDS	SOUND CHECK				
1	(EY.ON / VEH.STO	P ENG. STOP				
	STRT FIX	LINE				

SUDWAB9013L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

Fig1) Right hand rear inlet valve Actuation test at IG $\ensuremath{\mathsf{ON}}$

5. Does the valve activate normally?

YES

► There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

And go to "Verification of Vehicle Repair" procedure.

NO

NO

▶ Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9050L

000E Output Valve Right Hand Rear(Short To Ubatt/Uvent)

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and memory circuit that memorizes any а failure malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring			•	Replace ECU.
Enable Conditions	Ignition ON				
Threshold Value	When the HECU detects malfunction in the control system				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL	Yes			

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test"

DUAL DI SPLAY					
CURRENT DATA					
× INPUT	VALVE RHR	OFF 🔺			
× OUTPUT	VALVE RHR	OFF			
× INPUT	VALVE LHR	OFF 🔳			
× OUTPUT	VALVE LHR	OFF 🔻			
	ACTUAT	TON TEST			
OUTLET	VALVE RIGH	IT-HAND REAR			
1 SEC	CONDS	SOUND CHECK			
KEY . ON	✓ VEH.STOP	P ENG. STOP			
STRT	FIX	LINE			

4. Check the right hand rear outlet valve for operation when activating the actuator.

■ Specification: Normal if the activating sound is heard.

	DUAL DISPLAY				
	CU	RRENT	DATA		
×	INPUT VALVE R	HR		OFF	
×	OUTPUT VALVE	RHR		ON	
×	INPUT VALVE L	HR		OFF	
×	OUTPUT VALVE	LHR		OFF	Ŧ
	ACT	UATIO	N TEST		
	DUTLET VALVE R	I GHT -	HAND R	EAR	
	1 SECONDS		SOUND	СНЕСК	
]	(EY.ON / VEH.S	тор	ENG. S	тор	
	STRT	'IX	LINE		

SUDWAB9014L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

Fig1) Right hand rear outlet valve Actuation test at IG ON

5. Does the valve activate normally?

YES

▶ There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

And go to "Verification of Vehicle Repair" procedure.

NO

NO

ABS

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9048L

000F Input Valve Left Hand Rear(Short To Ubatt/Uvent)

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and circuit that memorizes any failure memory а malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring			•	Replace ECU.
Enable Conditions	Ignition ON				
Threshold Value	When the HECU detects malfunction in the control system				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL	Yes			

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test"

DUAL DISPLAY			
CURRENT DATA			
×	INPUT VALVE RH	R OFF 🔺	
×	OUTPUT VALVE R	HR OFF	
×	INPUT VALVE LH	R OFF 🔳	
×	OUTPUT VALVE LI	HR OFF 🔻	
ACTUATION TEST			
INLET VALVE LEFT-HAND REAR			
	1 SECONDS	SOUND CHECK	
KEY.ON / VEH.STOP ENG. STOP			
	STRT FI	X LINE	

4. Check the left hand rear inlet valve for operation when activating the actuator.
■ Specification: Normal if the activating sound is

Specification: Normal if the activating sound is heard.

DUAL DISPLAY			
CURRE	NT DATA		
× INPUT VALVE RHR OFF			
× OUTPUT VALVE RHR OFF			
× INPUT VALVE LHR ON			
* OUTPUT VALVE LHE	OFF 🔻		
ACTUATION TEST			
INLET VALVE LEFT-HAND REAR			
1 SECONDS	SOUND CHECK		
KEY.ON ∕ VEH.STOP ENG. STOP			
STRT FIX	LINE		

SUDWAB9015L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

Fig1) Left hand rear inlet valve Actuation test at IG $\ensuremath{\mathsf{ON}}$

5. Does the valve activate normally?

YES

▶ There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

And go to "Verification of Vehicle Repair" procedure.

NO

NO

▶ Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9048L

0010 Output Valve Left Hand Rear(Short To Ubatt/Uvent)

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and memory circuit that memorizes any а failure malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring			•	Replace ECU.
Enable Conditions	Ignition ON				
Threshold Value	When the HECU detects malfunction in the control system				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL	Yes			

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test".

DUAL DISPLAY			
CURR	ENT DATA		
× INPUT VALVE RHR	OFF 🔺		
× OUTPUT VALVE RHR OFF			
× INPUT VALVE LHR	OFF		
× OUTPUT VALVE LH	R OFF V		
ACTUATION TEST			
OUTLET VALVE LEFT-HAND REAR			
1 SECONDS	SOUND CHECK		
KEY.ON / VEH.STOP ENG. STOP			
STRT FIX	LINE		

4. Check the left hand rear outlet valve for operation when activating the actuator.

■ Specification: Normal if the activating sound is heard.

DUAL DISPLAY			
CURRENT DATA			
× INPUT VALVE RHR OFF			
* OUTPUT VALVE RHR OFF			
* INPUT VALVE LHR	OFF		
× OUTPUT VALVE LHE	ON 🔻		
ACTUATION TEST			
OUTLET VALVE LEFT-HAND REAR			
1 SECONDS SOUND CHECK			
KEY.ON / VEH.STOP ENG. STOP			
STRT FIX	LINE		

SUDWAB9016L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

Fig1) Left hand rear outlet valve Actuation test at IG ON

5. Does the valve activate normally?

YES

▶ There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

And go to "Verification of Vehicle Repair" procedure.

NO
NO

ABS

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

0011 Endurance Brake Relay(Short To Ubatt/Uvent)

COMPONENT LOCATION

GENERAL DESCRIPTION

The Endurance Brake Relay (DBR) is a device with which ABS ECU forcefully disengages any third brake applied by the driver, such as a supplementary brake like endurance brake, during the operation of ABS, and is installed in vehicles of 2.5t or larger where both the endurance brake and ABS are applied. In case when ABS is operational on a very slippery road and when a skid occurs on the rear wheels not by the main brake but by endurance brake, ABS ECU cannot control the rear wheel. Therefore, this function is applied for smooth ABS control.

DTC DESCRIPTION

HECU continues to monitor the DBR control signal. If a short-circuit in the power source is detected in the DBR control line, HECU determines it as a failure and outputs a fail code.

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring				Poor connection of
Enable Conditions	Ignition ON				connector and wiri-
Threshold Value	When short to the control circuit of DBR relay is detected			•	Short to power of
Diagnosis Time	Below 1,000 ms				control circuit
Fail Safe	Fuel Cut	No	 The ABS function works normally. 		ay
	Fuel Limit	Yes			
	MIL	Yes			

SPECIFICATION

ABS relay coil resistance

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON. Leave the engine OFF.
- 3. Select the data "Actuation test" on the scan tool.

DUAL DISPLAY				
	CURR	RENT DATA		
×	ECU SUPPLY VOLT	IAGE 22.7 V		
×	DBR RELAY	OFF		
×	ABS WARNING LAM	MP OFF		
×	BRAKE WARNING L	LAMP OFF	Ŧ	
	ACTUA	ATION TEST		
1)BR RELAY			
	1 SECONDS	SOUND CHECK		
1	(EY.ON / VEH.STO	OP ENG. STOP		
	STRT	X LINE		

- $200 \sim 450 \Omega (At 20^{\circ}C)$
- 4. Select the data "DBR relay" and perform actuation test.
 - Specification: Normal if the activating sound is heard.

DUAL	DISPLAY	8
CURRE	NT DATA	
* ECU SUPPLY VOLTA	IGE 22.7 V	
× DBR RELAY	ON	
* ABS WARNING LAMP	• OFF	
* BRAKE WARNING LA	MP OFF	T.
ACTUAT	ION TEST	0
DBR RELAY		ĺ
1 SECONDS	SOUND CHECK) J
KEY.ON / VEH.STOP	ENG. STOP	
		Ĉ
STRT FIX	LINE	

SUDWAB9017L

5. Can you hear the activating sound from the DBR relay?

YES

► There may be the defective HECU or a transient trouble due to a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Terminal & Connector Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

 Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination,

BR-148

deterioration, or damage.

3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

CONTROL CIRCUIT INSPECTION

- 1. Turn the ignition OFF.
- 2. Disconnect the DBR relay connector (M15) and HECU connector (C60).
- 3. Measure the voltage between the terminal 3 of DBR relay (M15) and chassis ground.
 - Specification: Below 0~0.1 V
- 4. Is the voltage measured within specification?

YES

► Go to "Component Inspection" procedure.

NO

▶ Repair short to power between terminal of HECU and terminal of DBR relay control and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION

- 1. Turn the ignition OFF.
- 2. Disconnect the DBR relay connector (M15).
- 3. Measure the resistance between terminals 3 and 5 of DBR relay component.

Specification: DBR relay coil resistance: 200 ~ 450 Ω (At 20 °C)

- Measure the resistance between terminals 1 and 4 of DBR relay while applying and cutting off B+ power to terminals 3 and 5 of DBR relay.
 - Specification

Continuity (When applying power)

Infinite (When cutting off power)

5. Is the resistance measured within specification?

YES

- ► Go to "Verification of Vehicle Repair" procedure.
- NO
- ► Replace the relay and go to "Verification of Vehicle Repair" procedure.

► Repeat "Component Inspection" procedure several times.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

SUDWAB9002L

0017 Sensor Right Hand Front(Impedance)

COMPONENT LOCATION

GENERAL DESCRIPTION

DTC DETECTING CONDITION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

DTC DESCRIPTION

HECU continues to monitor the input signal from the wheel sensor. If the resistance value in the front right wheel sensor signal line is abnormal, HECU determines it as a failure state and outputs a fail code.

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring			•	Defective sensor
Enable Conditions	Ignition ON].	wiring. Defective sensor
Threshold Value	Sensor impedance < 830 Ω , Sensor impedance>2,100 Ω				Delective sensor.
Diagnosis Time	1,000 ms				
Fail Safe	Fuel Cut	No	ABS function disa-		
	Fuel Limit	No	bled for concerned		
	MIL	Yes			

SPECIFICATION

Wheel sensor resistance	830 ~ 2,100 Ω (At 20 °C)
Air gap	0.2 ~ 1.7 mm

MONITOR SCAN TOOL DATA

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.
- 3. Drive the vehicle straight at a constant speed in the normal road surface.

	1.2. CURRENT	DATA	0 8/22
×	SENSOR VOLTAGE RHF	4.2	V
×	SENSOR VOLTAGE LHR	0.6	V I
×	SENSOR VOLTAGE LHF	0.6	V 🖕
×	SENSOR VOLTAGE RHR	1.2	V –
×	WHEEL SPEED RHF	10.6	Km/h
×	WHEEL SPEED LHR	10.6	Km/h
×	WHEEL SPEED LHF	10.8	Km∕h
×	WHEEL SPEED RHR	10.6	Kn∕h
			T
	FIX PART TOT HELP	LINE	REC

5. Is the data measured within specification?

YES

▶ There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Terminal & Connector Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

4. Monitor the data "Wheel speed RHF" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

		1.2	2. C	URRENT	DATA	08/2	22
							•
×	SENSOR	VOLTA	ήGE	RHF	0.8	U	
×	SENSOR	VOLTA	ήGE	LHR	4.7	V	
×	SENSOR	VOLTA	ΑGE	LHF	0.0	U	
×	SENSOR	VOLTA	ήGE	RHR	0.7	v	
×	WHEEL :	SPEED	RHE	7	21.0	Km∕h	
×	WHEEL :	SPEED	LHF	1	20.7	Km∕h	
×	WHEEL :	SPEED	LHF	•	21.0	Km∕h	
×	WHEEL :	SPEED	RHF	1	20.9	Km∕h	
							Ŧ
	FIX]	PART	TOT	HELI	P LINE	REC	

SUDWAB9008L

Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

SIGNAL CIRCUIT INSPECTION

Signal (+) Open Inspection

- 1. Disconnect the HECU connector and the wheel speed sensor connector.
- 2. Turn the ignition ON. Leave the engine OFF.
- Measure the resistance between the terminal 25 of HECU harness connector (C60) and the terminal 1 of wheel speed sensor harness connector (C30).
 - Specification: Continuity
- 4. Is the resistance measured within specification?

YES

• Go to next procedure.

NO

▶ Repair open circuit and go to "Verification of Vehicle Repair" procedure.

Signal (-) Open Inspection

- 1. Disconnect the HECU connector and the wheel speed sensor connector.
- 2. Turn the ignition ON. Leave the engine OFF.
- 3. Measure the resistance between the terminal 30 of HECU harness connector (C60) and the terminal 2 of wheel speed sensor harness connector (C30).
 - Specification: Continuity
- 4. Is the resistance measured within specification?

YES

▶ Go to next procedure.

NO

▶ Repair open circuit and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION

Sensor Air Gap Inspection

- 1. Turn the ignition OFF.
- 2. Check the air gap between right hand front tone wheel and wheel sensor with a thickness gauge.

■ Specification: 0.2~1.7 mm

3. Is the value measured within specification?

YES

Go to next procedure.

NO

▶ Repair it after checking wheel sensor installation condition and go to "Verification of Vehicle Repair" procedure.

▶ Repair or replace it after checking the condition of rotor and wheel bearing and go to "Verification of Vehicle Repair" procedure.

► Adjust it after checking the air gap between wheel sensor and rotor and go to "Verification of Vehicle Repair" procedure.

Right Hand Front Wheel Sensor Inspection

- 1. Turn the ignition OFF.
- 2. Disconnect the right hand front when sensor connector.
- Measure the resistance between positive (+) and negative (-) of the right hand front wheel sensor (C30).
 - Specification: 830 ~ 2,100 Ω (At 20°C)
- 4. Is the resistance measured within specification?

YES

► After checking the HECU for contamination or damage, install a known-good HECU and check it good or not.

▶ Replace the HECU if the vehicle is normal condition and go to "Verification of Vehicle Repair" procedure.

NO

► Replace the sensor if the vehicle is normal after temporarily installing a known-good sensor and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

SUDWAB9048L

Possible Cause

0018 Sensor Left Hand Rear(Impedance)

COMPONENT LOCATION

GENERAL DESCRIPTION

DTC DETECTING CONDITION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

DTC DESCRIPTION

HECU continues to monitor the input signal from the wheel sensor. If the resistance value in the rear left wheel sensor signal line is abnormal, HECU determines it as a failure state and outputs a fail code.

ltem	Detecting Condition
DTC Strategy	Signal monitoring
Enable Conditions	Ignition ON

DTC Strategy	Signal monitoring			•	Defective	senso
Enable Conditions	Ignition ON				wiring Defective s	ensor
Threshold Value	Sensor impedance < 830 Ω , Sensor impedance>2,100 Ω					
Diagnosis Time	1,000 ms					
Fail Safe	Fuel Cut	No	ABS function disa-			
	Fuel Limit	No	bled for concerned			
	MIL	Yes				

SPECIFICATION

Wheel sensor resistance	830 ~ 2,100 Ω (At 20 °C)
Air gap	0.2 ~ 1.7 mm

MONITOR SCAN TOOL DATA

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.
- 3. Drive the vehicle straight at a constant speed in the normal road surface.

	1.2. CURRENT	DATA	0 8/22
×	SENSOR VOLTAGE RHF	4.2	V
×	SENSOR VOLTAGE LHR	0.6	V I
×	SENSOR VOLTAGE LHF	0.6	V 🖕
×	SENSOR VOLTAGE RHR	1.2	V –
×	WHEEL SPEED RHF	10.6	Km/h
×	WHEEL SPEED LHR	10.6	Km/h
×	WHEEL SPEED LHF	10.8	Km∕h
×	WHEEL SPEED RHR	10.6	Kn∕h
			T
	FIX PART TOT HELP	LINE	REC

5. Is the data measured within specification?

YES

▶ There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Terminal & Connector Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

4. Monitor the data "Wheel speed RHF" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

	1.2. CURRENT I	DATA	08/22
×	SENSOR VOLTAGE RHF	0.8	U I
×	SENSOR VOLTAGE LHR	4.7	V I
×	SENSOR VOLTAGE LHF	0.0	V 📕
×	SENSOR VOLTAGE RHR	0.7	V
×	WHEEL SPEED RHF	21.0	Km∕h
×	WHEEL SPEED LHR	20.7	Km∕h
×	WHEEL SPEED LHF	21.0	Km∕h
×	WHEEL SPEED RHR	20.9	Km∕h
			τ.
	FIX PART TOT HELP	LINE	REC

SUDWAB9008L

Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

SIGNAL CIRCUIT INSPECTION

Signal (+) Open Inspection

- 1. Disconnect the HECU connector and the wheel speed sensor connector.
- 2. Turn the ignition ON. Leave the engine OFF.
- 3. Measure the resistance between the terminal 28 of HECU harness connector (C60) and the terminal 1 of wheel speed sensor harness connector (C37).
 - Specification: Continuity
- 4. Is the resistance measured within specification?

YES

• Go to next procedure.

NO

▶ Repair open circuit and go to "Verification of Vehicle Repair" procedure.

BR-154

Signal (-) Open Inspection

- 1. Disconnect the HECU connector and the wheel speed sensor connector.
- 2. Turn the ignition ON. Leave the engine OFF.
- 3. Measure the resistance between the terminal 23 of HECU harness connector (C60) and the terminal 2 of wheel speed sensor harness connector (C37).
 - Specification: Continuity
- 4. Is the resistance measured within specification?
 - ► Go to next procedure.

NO

▶ Repair open circuit and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION

Sensor Air Gap Inspection

- 1. Turn the ignition OFF.
- 2. Check the air gap between left hand rear tone wheel and wheel sensor with a thickness gauge.

■ Specification: 0.2~1.7 mm

3. Is the value measured within specification?

YES

► Go to next procedure.

NO

Repair it after checking wheel sensor installation condition and go to "Verification of Vehicle Repair" procedure.

▶ Repair or replace it after checking the condition of rotor and wheel bearing and go to "Verification of Vehicle Repair" procedure.

► Adjust it after checking the air gap between wheel sensor and rotor and go to "Verification of Vehicle Repair" procedure.

Left Hand Rear Wheel Sensor Inspection

- 1. Turn the ignition OFF.
- 2. Disconnect the left hand rear connector (C37).
- 3. Measure the resistance between terminal positive (+) and terminal negative (-) of the left hand rear wheel sensor (C37).

Specification: 830 ~ 2100 Ω (At 20 °C)

4. Is the resistance measured within specification?

YES

► After checking the HECU for contamination or damage, install a known-good HECU and check it good or not.

▶ Replace the HECU if the vehicle is normal condition and go to "Verification of Vehicle Repair" procedure.

NO

▶ Replace the sensor if the vehicle is normal after temporarily installing a known-good sensor and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

► System OK

0019 Sensor Left Hand Front(Impedance)

COMPONENT LOCATION

GENERAL DESCRIPTION

DTC DETECTING CONDITION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

DTC DESCRIPTION

HECU continues to monitor the input signal from the wheel sensor. If the resistance value in the front left wheel sensor signal line is abnormal, HECU determines it as a failure state and outputs a fail code.

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring			•	Defective sensor
Enable Conditions	Ignition ON				wiring. Defective sensor
Threshold Value	Sensor impedance < 83	edance < 830 Ω, Sensor impedance>2,100 Ω			Derective Sensor.
Diagnosis Time	1,000 ms				
Fail Safe	Fuel Cut	No	ABS function disa-		
	Fuel Limit	No	bled for concerned		
	MIL	Yes	WIICOI.		

SPECIFICATION

Wheel sensor resistance	830 ~ 2,100 Ω (At 20 [°] C)	
Air gap	$0.2 \sim 1.7 \text{ mm}$	

SUDWAB9049L

MONITOR SCAN TOOL DATA

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.
- 3. Drive the vehicle straight at a constant speed in the normal road surface.

	1.2. CURRENT	DATA	0 8/22
×	SENSOR VOLTAGE RHF	4.2	V
×	SENSOR VOLTAGE LHR	0.6	V I
×	SENSOR VOLTAGE LHF	0.6	V 🖕
×	SENSOR VOLTAGE RHR	1.2	V –
×	WHEEL SPEED RHF	10.6	Km/h
×	WHEEL SPEED LHR	10.6	Km/h
×	WHEEL SPEED LHF	10.8	Km∕h
×	WHEEL SPEED RHR	10.6	Kn∕h
			T
	FIX PART TOT HELP	LINE	REC

5. Is the data measured within specification?

YES

▶ There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Terminal & Connector Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

4. Monitor the data "Wheel speed RHF" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

		1.	2 . (CURRENT	DATA	08/2	22
							•
×	SENSO	R VOLI	'AGE	RHF	0.8	U	
×	SENSO	R VOLI	AGE	LHR	4.7	V	
×	SENSO	R VOLI	'AGE	LHF	0.0	U	
×	SENSO	R VOLI	AGE	RHR	0.7	v	_
×	WHEEL	SPEE) RH	F	21.0	Km∕h	
×	WHEEL	SPEEI) LH	R	20.7	Km∕h	
×	WHEEL	SPEEI) LH	F	21.0	Km∕h	
×	WHEEL	SPEEI) RH	R	20.9	Km∕h	
							Ŧ
	FIX	PART	TO	r Heli	P LINE	REC	

SUDWAB9008L

Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

SIGNAL CIRCUIT INSPECTION

Signal (+) Open Inspection

- 1. Disconnect the HECU connector and the wheel speed sensor connector.
- 2. Turn the ignition ON. Leave the engine OFF.
- 3. Measure the resistance between the terminal 24 of HECU harness connector (C60) and the terminal 1 of wheel speed sensor harness connector (C31).
 - Specification: Continuity
- 4. Is the resistance measured within specification?

YES

• Go to next procedure.

NO

▶ Repair open circuit and go to "Verification of Vehicle Repair" procedure.

ABS

Signal (-) Open Inspection

- 1. Disconnect the HECU connector and the wheel speed sensor connector.
- 2. Turn the ignition ON. Leave the engine OFF.
- 3. Measure the resistance between the terminal 29 of HECU harness connector (C60) and the terminal 2 of wheel speed sensor harness connector (C31).
 - Specification: Continuity
- 4. Is the resistance measured within specification?
 - ► Go to next procedure.

NO

▶ Repair open circuit and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION

Left Hand Front Wheel Sensor Inspection

- 1. Turn the ignition OFF.
- 2. Disconnect the left hand front connector (C31).
- Measure the resistance between terminal positive (+) and terminal negative (-) of the left hand front wheel sensor.
 - Specification: 830 ~ 2,100 Ω (At 20[°]C)
- 4. Is the resistance measured within specification?

YES

► After checking the HECU for contamination or damage, install a known-good HECU and check it good or not.

▶ Replace the HECU if the vehicle is normal condition and go to "Verification of Vehicle Repair" procedure.

NO

▶ Replace the sensor if the vehicle is normal after temporarily installing a known-good sensor and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

001A Sensor Right Hand Rear(Impedance)

COMPONENT LOCATION

GENERAL DESCRIPTION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

DTC DESCRIPTION

HECU continues to monitor the input signal from the wheel sensor. If the resistance value in the rear right wheel sensor signal line is abnormal, HECU determines it as a failure state and outputs a fail code.

D	ТС	DE	TEC	TING	i C	ONDITION	

ltem		Detecting Condition			Possible Cause
DTC Strategy	Signal monitoring			•	Defective sensor
Enable Conditions	Ignition ON				wiring. Defective sensor
Threshold Value	Sensor impedance < 83	0 Ω, Sensor impedance>	>2,100 Ω		
Diagnosis Time	1,000 ms				
Fail Safe	Fuel Cut	No	ABS function disa-		
	Fuel Limit	No	bled for concerned		
	MIL	Yes	WHOOI.		

SPECIFICATION

Wheel sensor resistance	830 ~ 2,100 Ω (At 20 ℃)	
Air gap	$0.2 \sim 1.7 \text{ mm}$	

SUDWAB9050L

MONITOR SCAN TOOL DATA

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.
- 3. Drive the vehicle straight at a constant speed in the normal road surface.

	1.2. CURRENT	DATA	0 8/22
×	SENSOR VOLTAGE RHF	4.2	V
×	SENSOR VOLTAGE LHR	0.6	V I
×	SENSOR VOLTAGE LHF	0.6	V 🖕
×	SENSOR VOLTAGE RHR	1.2	V –
×	WHEEL SPEED RHF	10.6	Km/h
×	WHEEL SPEED LHR	10.6	Km/h
×	WHEEL SPEED LHF	10.8	Km∕h
×	WHEEL SPEED RHR	10.6	Kn∕h
			T
	FIX PART TOT HELP	LINE	REC

5. Is the data measured within specification?

YES

▶ There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Terminal & Connector Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

 Monitor the data "Wheel speed RHF" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

		1.	2. (CURRENT	DATA	08/2	22
×	SENSO	R VOLT	AGE	RHF	0.8	Ų	
×	SENSO	R VOLT	'AGE	LHR	4.7	V	
×	SENSO	R VOLT	AGE	LHF	0.0	Ų	
×	SENSO	R VOLT	AGE	RHR	0.7	V	
×	WHEEL	SPEED	RHI	F	21.0	Km∕h	
×	WHEEL	SPEED	LH	R	20.7	Km⁄h	
×	WHEEL	SPEED	LH	F	21.0	Km∕h	
×	WHEEL	SPEED	RH	B	20.9	Km∕ h	
							Ŧ
	FIX	PART	TO	r Hell	P LINE	REC	

SUDWAB9008L

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

SIGNAL CIRCUIT INSPECTION

Signal (+) Open Inspection

- 1. Disconnect the HECU connector and the wheel speed sensor connector.
- 2. Turn the ignition ON. Leave the engine OFF.
- Measure the resistance between the terminal 22 of HECU harness connector (C60) and the terminal 1 of wheel speed sensor harness connector (C36).
 - Specification: Continuity
- 4. Is the resistance measured within specification?

YES

• Go to next procedure.

NO

▶ Repair open circuit and go to "Verification of Vehicle Repair" procedure.

BR-160

Signal (-) Open Inspection

- 1. Disconnect the HECU connector and the wheel speed sensor connector.
- 2. Turn the ignition ON. Leave the engine OFF.
- 3. Measure the resistance between the terminal 27 of HECU harness connector (C60) and the terminal 2 of wheel speed sensor harness connector (C36).
 - Specification: Continuity
- 4. Is the resistance measured within specification?

 - Go to next procedure.

NO

▶ Repair open circuit and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION

Right hand rear Wheel Sensor Inspection

- 1. Turn the ignition OFF.
- 2. Disconnect the right hand rear connector (C36).
- 3. Measure the resistance between terminal positive (+) and terminal negative (-) of the right hand rear wheel sensor (C36).
 - Specification: 830 ~ 2100 Ω (At 20 °C)
- 4. Is the resistance measured within specification?

YES

► After checking the HECU for contamination or damage, install a known-good HECU and check it good or not.

▶ Replace the HECU if the vehicle is normal condition and go to "Verification of Vehicle Repair" procedure.

NO

▶ Replace the sensor if the vehicle is normal after temporarily installing a known-good sensor and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis.Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

001B Input Valve Right Hand Front(Open Circuit)

COMPONENT LOCATION

SUDWAB9002L

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and circuit that memorizes any а failure memory malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

HECU continues to monitor the internal components, such as memory, input and output circuits. In case of an error during the operation of the control system, HECU determines whether it is a failure state and outputs a fail code.

ltem	Detecting Condition				Possible Cause	
DTC Strategy	Signal monitoring	Signal monitoring				
Enable Conditions	Ignition ON					
Threshold Value	When the HECU detects malfunction in the control system					
Diagnosis Time	Below 1,000 ms					
Fail Safe	Fuel Cut	No	ABS function temp-			
	Fuel Limit	Yes	orarily disabled for			
	MIL	Yes	Solicemed wheel.			

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test".

DUAL DISPLAY						
	CURREN	IT DATA				
× INPUT VAL	VE RHF	OFF				
× OUTPUT VA	LVE RHF	OFF				
× INPUT VAL	VE LHF	OFF				
× OUTPUT VA	LVE LHF	OFF				
•	ACTUAT I	ON TEST				
INLET VALV	E RIGHT-	HAND FRONT				
1 SECONE	1 SECONDS SOUND CHECK					
KEY.ON / VEH.STOP ENG. STOP						
STRT	FIX	LINE				

4. Check the right hand front inlet valve for operation when activating the actuator.

■ Specification: Normal if the activating sound is heard.

	DUAL DI	SPLAY	
	CURRENI	DATA	
\star I NPUT 🛛 VAI	VE RHF	ON	
* OUTPUT VA	ALVE RHF	OFF	
× INPUT VAI	LVE LHF	OFF	
× OUTPUT VA	ALVE LHF	OFF	T
	ACTUATIO	N TEST	
INLET VALU	JE RIGHT-H	IAND FRONT	
1 SECONI)S	SOUND CHECK	
KEY.ON Z U	JEH. STOP	ENG. STOP	
STRT	FIX	LINE	

SUDWAB9018L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

► Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

Fig1) Right hand front inlet valve Actuation test at IG ON

5. Does the valve activate normally?

YES

▶ There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

And go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Component Inspection" procedure.

NO

ABS

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

001C Output Valve Right Hand Front(Open Circuit)

COMPONENT LOCATION

SUDWAB9002L

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and failure memory circuit that memorizes any а malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

HECU continues to monitor the internal components, such as memory, input and output circuits. In case of an error during the operation of the control system, HECU determines whether it is a failure state and outputs a fail code.

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring	•	Replace ECU.		
Enable Conditions	Ignition ON				
Threshold Value	When the HECU detect				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS function temp- orarily disabled for concerned wheel.		
	Fuel Limit	Yes			
	MIL	Yes			

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test".

	DUAL DISPLAY					
		CURREN	IT DATA			
×	INPUT VALV	E RHF	OFF			
×	OUTPUT VAL	VE RHF	OFF			
×	INPUT VALV	E LHF	OFF			
×	OUTPUT VAL	VE LHF	OFF	•		
		ACTUATI	ON TEST			
	DUTLET VALV	E RIGHI	-HAND FRONT			
	1 SECONDS SOUND CHECK					
	KEY.ON ∕ VEH.STOP ENG. STOP					
	STRT	FIX	LINE			

4. Check the right hand front outlet valve for operation when activating the actuator.

■ Specification: Normal if the activating sound is heard.

DUAL DISPLAY					
	CURRE	NT DATA			
× INPUT VALVE	RHF	OFF			
× OUTPUT VALV	E RHF	ON			
× INPUT VALVE	LHF	OFF			
× OUTPUT VALV	E LHF	OFF	•		
Ĥ	CTUAT	ION TEST			
OUTLET VALVE	E RIGH	F-HAND FRONT			
1 SECONDS		SOUND CHECK			
KEY.ON ∕ VEH.STOP ENG. STOP					
STRT	FIX	LINE			

SUDWAB9019L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

Fig1) Right hand front outlet valve Actuation test at IG ON

5. Does the valve activate normally?

YES

▶ There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

And go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Component Inspection" procedure.

NO

▶ Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9049L

001D Input Valve Left Hand Front(Open Circuit)

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and circuit that memorizes any memory а failure malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

HECU continues to monitor the internal components, such as memory, input and output circuits. In case of an error during the operation of the control system, HECU determines whether it is a failure state and outputs a fail code.

ltem	Detecting Condition				Possible Cause	
DTC Strategy	Signal monitoring	Signal monitoring				
Enable Conditions	Ignition ON	Ignition ON				
Threshold Value	When the HECU detect	rol system				
Diagnosis Time	Below 1,000 ms					
Fail Safe	Fuel Cut	No	ABS function disa-			
	Fuel Limit	Yes	bled for concerned			
	MIL	Yes	WHEE			

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test".

DUAL DISPLAY					
CURRI	ENT DATA				
× INPUT VALVE RHF	OFF 🔺				
× OUTPUT VALVE RHI	F OFF				
× INPUT VALVE LHF	OFF				
× OUTPUT VALVE LH	F OFF 🔻				
ACTUA	LION TEST				
INLET VALVE LEFT	-HAND FRONT				
1 SECONDS	1 SECONDS SOUND CHECK				
KEY.ON ∕ VEH.STOP ENG. STOP					
STRT	LINE				

when activating the actuator. ■ Specification: Normal if the activating sound is heard.

4. Check the left hand front inlet valve for operation

DUAL DISPLAY					
CURRE	NT DATA				
× INPUT VALVE RHF	OFF 🔺				
× OUTPUT VALVE RHE	OFF				
× INPUT VALVE LHF	ON				
* OUTPUT VALVE LHE	OFF 🔻				
ACTUAT	ION TEST				
INLET VALVE LEFT-	HAND FRONT				
1 SECONDS SOUND CHECK					
KEY.ON / VEH.STOP ENG. STOP					
STRT FIX	LINE				

SUDWAB9020L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

Fig1) Left hand front inlet valve Actuation test at IG ON

5. Does the valve activate normally?

YES

► There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

And go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Component Inspection" procedure.

NO

ABS

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9049L

001E Output Valve Left Hand Front(Open Circuit)

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and failure memory circuit that memorizes any а malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

HECU continues to monitor the internal components, such as memory, input and output circuits. In case of an error during the operation of the control system, HECU determines whether it is a failure state and outputs a fail code.

ltem	Detecting Condition				Possible Cause	
DTC Strategy	Signal monitoring	Signal monitoring				
Enable Conditions	Ignition ON					
Threshold Value	When the HECU detect					
Diagnosis Time	Below 1,000 ms					
Fail Safe	Fuel Cut	No	ABS function temp- orarily disabled for concerned wheel.			
	Fuel Limit	Yes				
	MIL	Yes				

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test".

DUAL DISPLAY					
CURRI	ENT DATA				
× INPUT VALVE RHF	OFF 🔺				
× OUTPUT VALVE RH	F OFF				
× INPUT VALVE LHF	OFF 📕				
× OUTPUT VALVE LHE	F OFF				
ACTUATION TEST					
OUTLET VALVE LEFT	-HAND FRONT				
1 SECONDS SOUND CHECK					
KEY.ON ∕ VEH.STOP ENG. STOP					
STRT FIX	LINE				

4. Check the left hand front outlet valve for operation when activating the actuator.

■ Specification: Normal if the activating sound is heard.

	DUAL 1	DISPLAY	
	CURRE	IT DATA	
× INPUT VAL	VE RHF	OFF	
× OUTPUT VA	LVE RHF	OFF	
× INPUT VAL	VE LHF	OFF	
× OUTPUT VA	LVE LHF	ON	The second se
•	ACTUAT	ON TEST	
OUTLET VAL	VE LEFT-	HAND FRONT	
1 SECOND	S	SOUND CHECK	
KEY.ON Z V	EH.STOP	ENG. STOP	
STRT	FIX	LINE	

SUDWAB9021L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

Fig1) Left hand front outlet valve Actuation test at IG $\ensuremath{\mathsf{ON}}$

5. Does the valve activate normally?

YES

▶ There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

And go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Component Inspection" procedure.

BR-172

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis.Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

SUDWAB9050L

001F Input Valve Right Hand Rear(Open Circuit)

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and circuit that memorizes any memory а failure malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

HECU continues to monitor the internal components, such as memory, input and output circuits. In case of an error during the operation of the control system, HECU determines whether it is a failure state and outputs a fail code.

ltem	Detecting Condition				Possible Cause	
DTC Strategy	Signal monitoring	Signal monitoring				
Enable Conditions	Ignition ON	Ignition ON				
Threshold Value	When the HECU detect					
Diagnosis Time	Below 1,000 ms					
Fail Safe	Fuel Cut	No	ABS function temp- orarily disabled for			
	Fuel Limit	Yes				
	MIL	Yes	concerned wheel.			

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test".

	DUAL DISPLAY					
	CURRI	ENT DATA				
×	INPUT VALVE RHR	OFF 🔺				
×	OUTPUT VALVE RHI	R OFF				
×	INPUT VALVE LHR	OFF 📕				
×	OUTPUT VALVE LHI	R OFF 🔻				
	ACTUA	TION TEST				
Ι	NLET VALVE RIGH?	-HAND REAR				
	1 SECONDS SOUND CHECK					
KEY.ON ∕ VEH.STOP ENG. STOP						
	STRT FIX	LINE				

4. Check the right hand rear inlet valve for operation when activating the actuator.

■ Specification: Normal if the activating sound is heard.

	DUAL DISPLAY					
	CURRI	ENT DATA				
×	INPUT VALVE RHR	ON 🔺				
×	OUTPUT VALVE RHI	R OFF				
×	INPUT VALVE LHR	OFF 📕				
×	OUTPUT VALVE LHI	R OFF 🔻				
	ACTUAI	TION TEST				
	INLET VALVE RIGHT	-HAND REAR				
	1 SECONDS SOUND CHECK					
	KEY.ON ∕ VEH.STOP ENG. STOP					
	STRT FIX	LINE				

SUDWAB9022L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

► Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

Fig1) Right hand rear inlet valve Actuation test at IG ON

5. Does the valve activate normally?

YES

► There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

And go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Component Inspection" procedure.

NO

ABS

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9050L

0020 Output Valve Right Hand Rear(Open Circuit)

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and failure memory circuit that memorizes any а malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

HECU continues to monitor the internal components, such as memory, input and output circuits. In case of an error during the operation of the control system, HECU determines whether it is a failure state and outputs a fail code.

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring				Replace ECU.
Enable Conditions	Ignition ON				
Threshold Value	When the HECU detects malfunction in the control system				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS function temp-		
	Fuel Limit	Yes	orarily disabled for concerned wheel.		
	MIL	Yes			

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test".

	DUAL DISPLAY						
		CUR	RENT	DATA			
×	INPUT	VALVE RH	R		OFF		
×	OUTPUT	VALVE R	HR		OFF		
×	INPUT	VALVE LH	R		OFF		
×	OUTPUT	VALVE L	HR		OFF		T
	ACTUATION TEST						
- 1	OUTLET VALVE RIGHT-HAND REAR						
1 SECONDS SOUND CHECK							
KEY.ON ∕ VEH.STOP ENG. STOP							
	STRT	FI	X	INE			

when activating the actuator.

Specification: Normal if the activating sound is

4. Check the right hand rear outlet valve for operation

■ Specification: Normal if the activating sound is heard.

	DUAL DISPLAY					
	CURRI	INT DATA				
×	INPUT VALVE RHR	OFF 🔺				
×	OUTPUT VALVE RHI	ON				
×	INPUT VALVE LHR	OFF 🔳				
×	OUTPUT VALVE LHI	OFF 🔻				
	ACTUATION TEST					
	OUTLET VALVE RIG	IT-HAND REAR				
1 SECONDS SOUND CHECK						
]	KEY.ON ∕ VEH.STOP ENG. STOP					
	STRT FIX	LINE				

SUDWAB9023L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

Fig1) Right hand rear outlet valve Actuation test at IG ON

5. Does the valve activate normally?

YES

► There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

And go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Component Inspection" procedure.

NO

▶ Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

SUDWAB9048L

0021 Input Valve Left Hand Rear(Open Circuit)

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and memory circuit that memorizes any а failure malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

HECU continues to monitor the internal components, such as memory, input and output circuits. In case of an error during the operation of the control system, HECU determines whether it is a failure state and outputs a fail code.

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring				Replace ECU.
Enable Conditions	Ignition ON				
Threshold Value	When the HECU detects malfunction in the control system				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS function temp-		
	Fuel Limit Yes orari	orarily disabled for			
	MIL	Yes			

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test".

DUAL DISPLAY					
CURR	ENT DATA				
× INPUT VALVE RHR	OFF 🔺				
× OUTPUT VALVE RH	R OFF				
× INPUT VALVE LHR	OFF				
× OUTPUT VALVE LH	R OFF 🔻				
ACTUATION TEST					
INLET VALVE LEFT	-HAND REAR				
1 SECONDS	SOUND CHECK				
KEY.ON ∕ VEH.STOP ENG. STOP					
STRT	LINE				

when activating the actuator. ■ Specification: Normal if the activating sound is heard.

4. Check the left hand rear inlet valve for operation

DUAL DISPLAY						
	CURRE	NT DATA				
× INPU	× INPUT VALVE RHR OFF					
× OUTP	UT VALVE RHR	OFF				
× INPU	T VALVE LHR	ON				
× OUTP	UT VALVE LHR	OFF	•			
	ACTUATION TEST					
INLET	VALVE LEFT-	HAND REAR				
1 S	ECONDS	SOUND CHECK				
KEY.ON ∕ VEH.STOP ENG. STOP						
STRT	FIX	LINE				

SUDWAB9024L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

Fig1) Left hand rear inlet valve Actuation test at IG ON

5. Does the valve activate normally?

YES

▶ There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

And go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Component Inspection" procedure.
ABS

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9048L

0022 Output Valve Left Hand Rear(Open Circuit)

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and circuit that memorizes any а failure memory malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

ltem	Detecting Condition				Possible Cause	
DTC Strategy	Signal monitoring			•	Replace ECU.	
Enable Conditions	Ignition ON	Ignition ON				
Threshold Value	When the HECU detects malfunction in the control system					
Diagnosis Time	Below 1,000 ms					
Fail Safe	Fuel Cut	No	ABS function temp-			
	Fuel Limit	Yes	orarily disabled for concerned wheel.			
	MIL	Yes				

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test".

DUAL DI SPLAY					
CURRE	ENT DATA				
× INPUT VALVE RHR	OFF 🔺				
× OUTPUT VALVE RHE	R OFF				
× INPUT VALVE LHR	OFF				
× OUTPUT VALVE LHE	R OFF 🔻				
ACTUAI	ION TEST				
OUTLET VALVE LEFT	-HAND REAR				
1 SECONDS	SOUND CHECK				
KEY.ON ∕ VEH.STOP ENG. STOP					
STRT	LINE				

Check the left hand rear outlet valve for operation when activating the actuator.
 Encoefficientian: Normal if the activating acund in

■ Specification: Normal if the activating sound is heard.

DUAL DISPLAY					
CURRE	NT DATA				
× INPUT VALVE RHR	OFF 🔺				
× OUTPUT VALVE RHE	OFF				
* INPUT VALVE LHR	OFF				
× OUTPUT VALVE LHE	ON 🔻				
ACTUAT	TON TEST				
OUTLET VALVE LEFT	-HAND REAR				
1 SECONDS	SOUND CHECK				
KEY.ON / VEH.STOP ENG. STOP					
STRT FIX	LINE				

SUDWAB9025L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

Fig1) Left hand rear outlet valve Actuation test at IG ON

5. Does the valve activate normally?

YES

▶ There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

And go to "Verification of Vehicle Repair" procedure.

NO

▶ Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

0023 Endurance Brake Relay(Open Circuit)

COMPONENT LOCATION

GENERAL DESCRIPTION

The Endurance Brake Relay (DBR) is a device with which ABS ECU forcefully disengages any third brake applied by the driver, such as a supplementary brake like endurance brake, during the operation of ABS, and is installed in vehicles of 2.5t or larger where both the endurance brake and ABS are applied. In case when ABS is operational on a very slippery road and when a skid occurs on the rear wheels not by the main brake but by endurance brake, ABS ECU cannot control the rear wheel. Therefore, this function is applied for smooth ABS control.

DTC DESCRIPTION

HECU continues to monitor the DBR control signal. If a short-circuit in the power source is detected in the DBR control line, HECU determines it as a failure and outputs a fail code.

Item	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring			•	Poor contact of co-
Enable Conditions	Ignition ON			nnector and wiring	
Threshold Value	When the ABS relay control circuit is open				Open of power of
Diagnosis Time	Below 1,000 ms				control circuit.
Fail Safe	Fuel Cut	No	The ABS function works normally.		ay.
	Fuel Limit	Yes			
	MIL	Yes			

SPECIFICATION

ABS relay coil resistance

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON. Leave the engine OFF.
- 3. Select the data "Actuation test" on the scan tool.
- 4. Select the data "DBR relay" and perform actuation test.

■ Specification: Normal if the activating sound is heard.

5. Can you hear the activating sound from the DBR relay?

YES

► There may be the defective HECU or a transient trouble due to a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

▶ Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Terminal & Connector Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.

200 ~ 450Ω (At 20℃)

3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

CONTROL CIRCUIT INSPECTION

Short to Control Power Inspection

- 1. Turn the ignition OFF.
- 2. Disconnect the DBR relay (M15) and HECU connector (C60).
- Measure the resistance between the terminal 3 of DBR relay harness connector (M15) and terminal 2 of HECU harness connector (C60).
 - Specification: Continuity
- 4. Is the resistance measured within specification?

YES

► Go to "Component Inspection" procedure.

NO

▶ Repair short to control power between terminal of HECU harness connector and terminal of DBR relay harness connector and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION

- 1. Turn the ignition OFF.
- 2. Disconnect the DBR relay connector (M15).
- 3. Measure the resistance between terminals 3 and 5 of DBR relay component.

Specification: DBR relay coil resistance: 200 ~ 450 Ω (At 20 °C)

 Measure the resistance between terminals 1 and 4 while applying and cutting off B+ power to terminals 3 and 5 of DBR relay.

Specification

Continuity (When applying power)

Infinite (When cutting off power)

5. Is the resistance measured within specification?

YES

▶ Go to "Verification of Vehicle Repair" procedure.

NO

▶ Replace the relay and go to "Verification of Vehicle Repair" procedure.

Repeat "Component Inspection" procedure several times.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

0024 Brake Light Relay(Open Circuit)

COMPONENT LOCATION

GENERAL DESCRIPTION

Stop lamp relay is a relay that controls brakes, etc.

DTC DESCRIPTION

HECU continues to monitor the relay control signals, such as brakes. In case of a short-circuit being detected in relay control lines such as brakes, HECU determines it as a failure and outputs a fail code.

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring			•	Poor contact of co-
Enable Conditions	Ignition ON				nnector and wiring
Threshold Value	When the brake light relay control circuit is open			•	Open of power of control circuit.
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No		•	ht control relay.
	Fuel Limit	Yes			
	MIL	Yes			

SPECIFICATION

Brake light relay coil resistance

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON. Leave the engine OFF.
- 3. Select the data "Actuation test" on the scan tool.

1.	1.5. ACTUATION TEST 10/13					
BRAKE LIGHT	RELAY					
DURATION	DURATION 1 SECONDS					
METHOD	ACTIVATION					
CONDITION KEY.ON / VEH.STOP ENG. STOP						
PRESS [STRT], IF YOU ARE READY !						
STRT						

SUDWAB9027L

5. Can you hear the activating sound from the brake light relay?

YES

▶ There may be the defective HECU or a transient trouble due to a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

▶ Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

actuation test.

heard.

► Go to "Terminal & Connector Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

200 ~ 450 Ω (At 20 °C)

4. Select the data "Brake light relay" and perform

Specification: Normal if the activating sound is

- Many malfunctions in the electrical system are caused by poor harness, and terminals.
 Faults can also be caused by interference from other electrical systems and mechanical or chemical
 - electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination,

BR-190

Brake System

deterioration, or damage.

3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

CONTROL CIRCUIT INSPECTION

Short to Control Power Inspection

- 1. Turn the ignition OFF.
- 2. Disconnect the brake light relay (M102) and HECU connector (C60).
- 3. Measure the resistance between the terminal 3 of brake light relay harness connector (M102) and terminal 20 of HECU harness connector (C60).
 - Specification: Continuity
- 4. Is the resistance measured within specification?

YES

► Go to "Component Inspection" procedure.

NO

▶ Repair short to control power between terminal of HECU harness connector and terminal of brake light relay control harness connector and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION

- 1. Turn the ignition OFF.
- 2. Disconnect the brake light relay connector (M102).
- 3. Measure the resistance between terminals 3 and 5 of ABS relay component.
 - Specification: Brake light relay coil resistance: 200 ~ 450 Ω (At 20℃)
- Measure the resistance between terminals 1 and 4 of brake light relay while applying and cutting off B⁺ power to terminals 3 and 5 of ABS light relay.

Specification:

Continuity (When applying power) Infinite (When cutting off power)

5. Is the resistance measured within specification?

YES

► Go to "Verification of Vehicle Repair" procedure.

NO

- ► Replace the relay and go to "Verification of Vehicle Repair" procedure.
- Repeat "Component Inspection" procedure several times.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

0029 Input Valve Right Hand Front(Short To Ground)

COMPONENT LOCATION

SUDWAB9002L

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and circuit that memorizes any memory а failure malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring			•	Replace ECU.
Enable Conditions	Ignition ON	Ignition ON			
Threshold Value	When the HECU detects malfunction in the control system				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS function temp-		
	Fuel Limit	Yes	orarily disabled for		
	MIL	Yes	concerned wheel.		

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test"

DUAL DISPLAY					
	CURREN	IT DATA			
× INPUT VAI	VE RHF	OFF			
× OUTPUT VA	LVE RHF	OFF			
× INPUT VAI	VE LHF	OFF			
× OUTPUT VA	LVE LHF	OFF	•		
	ACTUAT I	ON TEST			
INLET VALV	E RIGHT-	HAND FRONT			
1 SECONI)S	SOUND CHECK			
KEY.ON ∕ VEH.STOP ENG. STOP					
STRT	FIX	LINE			

4. Check the right hand front inlet valve for operation when activating the actuator.

■ Specification: Normal if the activating sound is heard.

	DUAL DIS	SPLAY	
	CURRENT	DATA	
× INPUT VAL	VE RHF	ON	4
× OUTPUT VA	LVE RHF	OFF	
* INPUT VAL	VE LHF	OFF	
× OUTPUT VA	LVE LHF	OFF	
	ACTUATION	I TEST	1.55
INLET VALV	E RIGHT-HA	AND FRONT	
1 SECOND	S S	SOUND CHECK	
KEY.ON Z V	EH.STOP I	ENG. STOP	
STRT	FIX I	INE	

SUDWAB9028L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

Fig1) Right hand front inlet valve Actuation test at IG ON

5. Does the valve activate normally?

YES

► There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

► And go to "Verification of Vehicle Repair" procedure.

NO

ABS

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

002A Output Valve Right Hand Front(Short To Ground)

COMPONENT LOCATION

SUDWAB9002L

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and failure memory circuit that memorizes any а malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

ltem	Detecting Condition				Possible Cause	
DTC Strategy	Signal monitoring			•	Replace ECU.	
Enable Conditions	Ignition ON	Ignition ON				
Threshold Value	When the HECU detects malfunction in the control system					
Diagnosis Time	Below 1,000 ms					
Fail Safe	Fuel Cut	No	ABS function temp-			
	Fuel Limit	Yes	orarily disabled for concerned wheel.			
	MIL	Yes				

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test".

	DUAL DISPLAY					
		CURREN	IT DATA			
×	INPUT VALV	E RHF	OFF			
×	OUTPUT VAL	VE RHF	OFF			
×	INPUT VALV	E LHF	OFF			
×	OUTPUT VAL	VE LHF	OFF	•		
		ACTUATI	ON TEST			
	DUTLET VALV	E RIGHI	-HAND FRONT			
	1 SECONDS		SOUND CHECK			
	KEY.ON ∕ VEH.STOP ENG. STOP					
	STRT	FIX	LINE			

4. Check the right hand front outlet valve for operation when activating the actuator.

■ Specification: Normal if the activating sound is heard.

DUAL DISPLAY					
CURR	ENT DATA				
× INPUT VALVE RHF	OFF 🔺				
× OUTPUT VALVE RH	F ON				
* INPUT VALVE LHF	OFF				
* OUTPUT VALVE LH	7 OFF 🔻				
ACTUA	TION TEST				
OUTLET VALVE RIG	IT-HAND FRONT				
1 SECONDS	SOUND CHECK				
KEY.ON ∕ VEH.STOP ENG. STOP					
STRT	LINE				

SUDWAB9029L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

► Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

Fig1) Right hand front outlet valve Actuation test at IG ON

5. Does the valve activate normally?

YES

► There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

► And go to "Verification of Vehicle Repair" procedure.

NO

▶ Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9049L

002B Input Valve Left Hand Front(Short To Ground)

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and memory circuit that memorizes any а failure malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring				Replace ECU.
Enable Conditions	Ignition ON				
Threshold Value	When the HECU detects malfunction in the control system				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS function temp-		
	Fuel Limit	Yes	orarily disabled for		
	MIL	Yes	oonoemed wheel.		

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test".

DUAL DISPLAY					
CURRENT DATA					
× INPUT VALVE RHF	OFF 🔺				
× OUTPUT VALVE RH	F OFF				
× INPUT VALVE LHF	OFF				
× OUTPUT VALVE LH	F OFF 🔻				
ACTUA	TION TEST				
INLET VALVE LEFT	-Hand Front				
1 SECONDS	SOUND CHECK				
KEY.ON ∕ VEH.STOP ENG. STOP					
STRT	LINE				

when activating the actuator. ■ Specification: Normal if the activating sound is heard.

4. Check the left hand front inlet valve for operation

	DUAL DISPLAY				
	CURRENT	DATA			
× INPUT V	ALVE RHF	OFF			
× OUTPUT	VALVE RHF	OFF			
× INPUT V	ALVE LHF	0 N			
× OUTPUT	VALVE LHF	OFF	•		
	ACTUATIO	N TEST	·		
INLET VA	IVE LEFT-HA	ND FRONT			
1 SECO	INDS	SOUND CHECK			
KEY.ON 🗸	VEH.STOP	ENG. STOP			
STRT	FIX	LINE			

SUDWAB9030L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

► Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

Fig1) Left hand front inlet valve Actuation test at IG ON

5. Does the valve activate normally?

YES

► There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

► And go to "Verification of Vehicle Repair" procedure.

NO

ABS

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9049L

002C Output Valve Left Hand Front(Short To Ground)

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and circuit that memorizes any failure memory а malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring				Replace ECU.
Enable Conditions	Ignition ON				
Threshold Value	When the HECU detects malfunction in the control system				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS function temp-		
	Fuel Limit	Yes	orarily disabled for		
	MIL	Yes	Solicemed wheel.		

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test".

DUAL DISPLAY						
	CURRENT DATA					
×ı	INPUT	VALVE RHF			OFF	
× (DUTPL	JT VALVE RHI	F		OFF	
× I	INPUT	VALVE LHF			OFF	
×	DUTPL	IT VALVE LHI	5		OFF	
		ACTUA	1011	TES	Г	÷
OL	JTLEI	VALVE LEF	r-Hf	AND F	RONT	
1	L SE	CONDS	5	SOUND	CHECK	
KI	KEY.ON / VEH.STOP ENG. STOP					
5	STRT	FIX	I	LINE		

when activating the actuator.

Specification: Normal if the activating sound is

4. Check the left hand front outlet valve for operation

heard.

	DUAL 1	DISPLAY	
	CURRE	NT DATA	
× INPUT VAI	VE RHF	OFF	
× OUTPUT VA	ALVE RHF	OFF	
× INPUT VAI	VE LHF	OFF	
× OUTPUT VA	ALVE LHF	ON	T
	ACTUAT	ON TEST	
OUTLET VAI	VE LEFT	-HAND FRONT	
1 SECONI)S	SOUND CHECK	
KEY.ON Z V	EH.STOP	ENG. STOP	
STRT	FIX	LINE	

SUDWAB9031L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

Fig1) Left hand front outlet valve Actuation test at IG ON

5. Does the valve activate normally?

YES

► There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

► And go to "Verification of Vehicle Repair" procedure.

NO

▶ Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9050L

002D Input Valve Right Hand Rear(Short To Ground)

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and circuit that memorizes any memory а failure malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring				Replace ECU.
Enable Conditions	Ignition ON				
Threshold Value	When the HECU detects malfunction in the control system				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS function temp-		
	Fuel Limit	Yes	orarily disabled for		
	MIL	Yes	Sonocined wheel.		

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test".

	DUAL DI SPLAY					
	CUI	RRENT DATA				
×	INPUT VALVE R	HR OFF 🔺				
×	OUTPUT VALVE I	RHR OFF				
×	INPUT VALVE L	HR OFF 				
×	OUTPUT VALVE I	LHR OFF 🔻				
	ACTI	UATION TEST				
]	INLET VALVE RIG	GHT-HAND REAR				
	1 SECONDS	SOUND CHECK				
]	KEY.ON / VEH.SI	TOP ENG. STOP				
	STRT FI	TX LINE				

4. Check the right hand rear inlet valve for operation when activating the actuator.

■ Specification: Normal if the activating sound is heard.

	DUAL DISPLAY				
	CUF	RENT	DATA		
×	INPUT VALVE RH	IR	ON	▲	
×	OUTPUT VALVE F	RHR	OFF		
×	INPUT VALVE LH	IR	OFF		
×	OUTPUT VALVE I	.HR	OFF	•	
	ACTL	AT I ON	I TEST		
	INLET VALVE RIG	GHT-HA	ND REAR		
	1 SECONDS	8	SOUND CHECK		
	KEY.ON / VEH.ST	OP E	NG. STOP		
	STRT	XI	LINE		

SUDWAB9032L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

Fig1) Right hand rear inlet valve Actuation test at IG ON

5. Does the valve activate normally?

YES

► There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

► And go to "Verification of Vehicle Repair" procedure.

NO

ABS

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9050L

002E Output Valve Right Hand Rear(Short To Ground)

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and failure memory circuit that memorizes any а malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring				Replace ECU.
Enable Conditions	Ignition ON				
Threshold Value	When the HECU detects malfunction in the control system				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS function temp-		
	Fuel Limit	Yes	orarily disabled for		
	MIL	Yes	obligemed wheel.		

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test".

	DUAL DISPLAY				
		CURRI	ent data		
×	INPUI	VALVE RHR	OFF 🔺		
×	OUTPL	JT VALVE RHI	R OFF		
×	INPUT	VALVE LHR	0FF 🔳		
×	Ουτρι	JT VALVE LHI	R OFF 🔻		
	•	ACTUA	TION TEST		
	OUTLET	VALVE RIG	HT-HAND REAR		
	1 SF	ECONDS	SOUND CHECK		
]	KEY . ON	I / VEH.STO	P ENG. STOP		
	STRT	FIX	LINE		

4. Check the right hand rear outlet valve for operation when activating the actuator.

■ Specification: Normal if the activating sound is heard.

DUAL DISPLAY				
	CURRENT	DATA		
× INPUT VA	LVE RHR	OFF		
× OUTPUT V	ALVE RHR	ON		
× INPUT VA	LVE LHR	OFF		
× OUTPUT V	ALVE LHR	OFF	•	
	ACTUATION	TEST	·	
OUTLET VA	LVE RIGHT-H	AND REAR		
1 SECON	IDS S	OUND CHECK		
KEY.ON 🗡	VEH.STOP E	NG. STOP		
STRT	FIX L	INE		

SUDWAB9033L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

► Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

Fig1) Right hand rear outlet valve Actuation test at IG ON

5. Does the valve activate normally?

YES

► There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

► And go to "Verification of Vehicle Repair" procedure.

NO

▶ Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9048L

002F Input Valve Left Hand Rear(Short To Ground)

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and memory circuit that memorizes any а failure malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring			•	Replace ECU.
Enable Conditions	Ignition ON				
Threshold Value	When the HECU detects malfunction in the control system				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS function temp-		
	Fuel Limit	Yes	orarily disabled for		
	MIL	Yes	Sonocined wheel.		

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test".

	DUAL DISPLAY				
	CURF	ENT DATA			
×	INPUT VALVE RHF	OFF 🔺			
×	OUTPUT VALVE RH	IR OFF			
×	INPUT VALVE LHF	OFF 🛛			
×	OUTPUT VALVE LH	IR OFF 🔻			
	ACTUA	TION TEST			
J	INLET VALVE LEFT	-HAND REAR			
	1 SECONDS	SOUND CHECK			
]	KEY.ON / VEH.STO	P ENG. STOP			
	STRT				

Check the left hand rear inlet valve for operation when activating the actuator.

■ Specification: Normal if the activating sound is heard.

	DUAL DISPLAY				
		CURRE	ENT DATA		
×	INPUT (JALVE RHR	OFF 🔺		
×	OUTPUT	VALVE RHE	R OFF		
×	I NPUT	JALVE LHR	ON 🔳		
×	OUTPUT	VALVE LHE	R OFF 🔻		
		ACTUAI	TION TEST		
	INLET VA	ALVE LEFT-	HAND REAR		
	1 SECO	ONDS	SOUND CHECK		
	KEY.ON ∕ VEH.STOP ENG. STOP				
	STRT	FIX	LINE		

SUDWAB9034L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

Fig1) Left hand rear inlet valve Actuation test at IG ON

5. Does the valve activate normally?

YES

► There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

► And go to "Verification of Vehicle Repair" procedure.

NO

ABS

▶ Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9048L

0030 Output Valve Left Hand Rear(Short To Ground)

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and memory circuit that memorizes any а failure malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring			•	Replace ECU.
Enable Conditions	Ignition ON				
Threshold Value	When the HECU detects malfunction in the control system				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS function temp-		
	Fuel Limit	Yes	orarily disabled for		
	MIL	Yes	obligemed wheel.		

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test"

DUAL DISPLAY				
CURR	ent data			
× INPUT VALVE RHR	OFF 🔺			
× OUTPUT VALVE RH	R OFF			
× INPUT VALVE LHR	OFF 📕			
× OUTPUT VALVE LH	R OFF 🔻			
ACTUA	TION TEST			
OUTLET VALVE LEF	T-HAND REAR			
1 SECONDS	SOUND CHECK			
KEY.ON / VEH.STO	P ENG. STOP			
STRT	LINE			

Check the left hand rear outlet valve for operation when activating the actuator.
 Encoefficientian: Normal if the activating acund in

■ Specification: Normal if the activating sound is heard.

DUAL DISPLAY				
CURRE	NT DATA			
× INPUT VALVE RHR	OFF 🔺			
× OUTPUT VALVE RHE	OFF			
* INPUT VALVE LHR	OFF			
× OUTPUT VALVE LHE	ON 🔻			
ACTUAT	ION TEST			
OUTLET VALVE LEFT	-HAND REAR			
1 SECONDS	SOUND CHECK			
KEY.ON ∕ VEH.STOP ENG. STOP				
STRT FIX	LINE			

SUDWAB9035L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

► Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

Fig1) Left hand rear outlet valve Actuation test at IG ON

5. Does the valve activate normally?

YES

► There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

► And go to "Verification of Vehicle Repair" procedure.

NO

▶ Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

0032 Endurance Brake Relay(Short To Ground)

COMPONENT LOCATION

GENERAL DESCRIPTION

The Endurance Brake Relay (DBR) is a device with which ABS ECU forcefully disengages any third brake applied by the driver, such as a supplementary brake like endurance brake, during the operation of ABS, and is installed in vehicles of 2.5t or larger where both the endurance brake and ABS are applied. In case when ABS is operational on a very slippery road and when a skid occurs on the rear wheels not by the main brake but by endurance brake, ABS ECU cannot control the rear wheel. Therefore, this function is applied for smooth ABS control.

DTC DESCRIPTION

HECU continues to monitor the DBR control signal. If a short-circuit in the power source is detected in the DBR control line, HECU determines it as a failure and outputs a fail code.

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring			• Po	 Poor connection of connector and wiri- ng damage. Short to ground of control circuit. Defective ABS co.
Enable Conditions	Ignition ON				
Threshold Value	When short to the control circuit of ABS relay is detected		•		
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	The ABS function		ntrol relay.
	Fuel Limit	Yes	works normally.		
	MIL	Yes			

SPECIFICATION

DBR relay coil resistance

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON. Leave the engine OFF.
- 3. Select the data "Actuation test" on the scan tool.

DUAL DISPLAY				
CURRE	INT DATA			
* ECU SUPPLY VOLTA	IGE 22.7 V 🔺			
× DBR RELAY	OFF			
× ABS WARNING LAMP	OFF			
× BRAKE WARNING LA	MP OFF 🔻			
ACTUAT	ION TEST			
DBR RELAY				
1 SECONDS	SOUND CHECK			
KEY.ON ∕ VEH.STOP ENG. STOP				
STRT FIX	LINE			

- 200 ~ 450 Ω (At 20℃)
- 4. Select the data "DBR relay" and perform actuation test.
 - Specification: Normal if the activating sound is heard.

DUAL	DISPLAY
CURRE	NT DATA
* ECU SUPPLY VOLTA	GE 22.7 V 🖌
× DBR RELAY	ON
* ABS WARNING LAMP	OFF
* BRAKE WARNING LA	MP OFF
ACTUAT	ION TEST
DBR RELAY	
1 SECONDS	SOUND CHECK
KEY. ON / VEH. STOP	ENG. STOP
STRT FIX	LINE

SUDWAB9036L

5. Can you hear the activating sound from the DBR relay?

YES

► There may be the defective HECU or a transient trouble due to a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

▶ Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Terminal & Connector Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

 Many malfunctions in the electrical system are caused by poor harness, and terminals.
 Faults can also be caused by interference from other

electrical systems, and mechanical or chemical damage.

2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination,
deterioration, or damage.

3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

CONTROL CIRCUIT INSPECTION Control Short to Ground Inspection

1. Turn the ignition OFF.

- 2. Disconnect the DBR relay connector (M15) and HECU connector (C60).
- 3. Measure the resistance between the terminal 3 of DBR relay harness connector (M15) and chassis ground.

Specification: Infinite

4. Is the resistance measured within specification?

YES

► Go to "Component Inspection" procedure.

NO

▶ Repair short to ground between terminal of HECU harness connector and terminal of DBR relay control and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION

- 1. Turn the ignition OFF.
- 2. Disconnect the DBR relay connector (M15).
- 3. Measure the resistance between terminals 3 and 5 of DBR relay component.

Specification: DBR relay coil resistance: 200 ~ 450 Ω (At 20 °C)

 Measure the resistance between terminals 1 and 4 of DBR relay while applying and cutting off B+ power to terminals 3 and 5 of DBR relay.

Specification:

Continuity (When applying power)

Infinite (When cutting off power)

5. Is the resistance measured within specification?

YES

► Go to "Verification of Vehicle Repair" procedure.

NO

- ► Replace the relay and go to "Verification of Vehicle Repair" procedure.
- ► Repeat "Component Inspection" procedure several times.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

Go to the applicable DTC procedure.
 NO

0033 Brake Light Relay(Short To Ground)

COMPONENT LOCATION

GENERAL DESCRIPTION

Stop lamp relay is a relay that controls brakes, etc.

DTC DESCRIPTION

HECU continues to monitor the relay control signals, such as brakes. In case of a short-circuit being detected in relay control lines such as brakes, HECU determines it as a failure and outputs a fail code.

DTC DETECTING CONDITION

Item	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring	•	Poor contact of co-		
Enable Conditions	Ignition ON		nnector and wiring		
Threshold Value	When the brake light relay control circuit is short				Short to ground of
Diagnosis Time	Below 1,000 ms				control circuit.
Fail Safe	Fuel Cut	No	The ABS function works normally.		ht relay.
	Fuel Limit	Yes			
	MIL	Yes			

SPECIFICATION

Brake light relay coil resistance

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON. Leave the engine OFF.
- 3. Select the data "Actuation test" on the scan tool.

1.	5. ACTUATION TEST 10/13				
BRAKE LIGHT	RELAY				
DURATION	1 SECONDS				
METHOD	ACTIVATION				
CONDITION	KEY.ON ∕ VEH.STOP ENG. STOP				
PRESS [STRT], IF YOU ARE READY !					
STRT					

SUDWAB9037L

5. Can you hear the activating sound from the brake light relay?

YES

▶ There may be the defective HECU or a transient trouble due to a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

▶ Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

actuation test.

heard.

► Go to "Terminal & Connector Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

200 ~ 450 Ω (At 20 °C)

4. Select the data "Brake light relay" and perform

Specification: Normal if the activating sound is

- Many malfunctions in the electrical system are caused by poor harness, and terminals.
 Faults can also be caused by interference from other electrical systems and mechanical or chemical
 - electrical systems, and mechanical or chemical damage.
- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination,

BR-220

Brake System

deterioration, or damage.

3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

CONTROL CIRCUIT INSPECTION

Short to Control Power Inspection

- 1. Turn the ignition OFF.
- 2. Disconnect the brake light relay (M102) and HECU connector (C60).
- 3. Measure the resistance between the terminal 3 of brake light relay harness connector (M102) and chassis ground.
 - Specification: Infinite
- 4. Is the resistance measured within specification?

YES

► Go to "Component Inspection" procedure.

NO

▶ Repair short to control circuit between terminal of HECU harness connector and terminal of brake light relay control harness and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION

- 1. Turn the ignition OFF.
- 2. Disconnect the brake light relay connector (M102).
- 3. Measure the resistance between terminals 3 and 5 of ABS light relay component.
 - Specification: Brake light relay coil resistance: 200 ~ 450 Ω (At 20 ℃)
- Measure the resistance between terminals 1 and 4 of brake light relay while applying and cutting off B⁺ power to terminals 3 and 5 of ABS light relay.

Specification:

Continuity (When applying power) Infinite (When cutting off power)

5. Is the resistance measured within specification?

YES

► Go to "Verification of Vehicle Repair" procedure.

NO

- ► Replace the relay and go to "Verification of Vehicle Repair" procedure.
- Repeat "Component Inspection" procedure several times.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

SUDWAB9001L

0037 Valve Relay(Can't Switch Off)

COMPONENT LOCATION

GENERAL DESCRIPTION

DTC DETECTING CONDITION

HECU supplies the battery voltage to all solenoid valves through the valve relay controlled by ECU. All solenoid valves and valve relay are installed in HECU.

DTC DESCRIPTION

HECU determines whether the switch that operates the valve relay is turned on/off while the power to the system is on. If the switch OFF does not work, a fail code is output.

Item	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring			•	Replace ECU.
Enable Conditions	Ignition ON	Ignition ON			
Threshold Value	Valve relay switch is not turned OFF.				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL	Yes			

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and then go to "Verification of

Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

CONTROL CIRCUIT INSPECTION

Control Power Inspection

- 1. Turn the ignition OFF.
- 2. Disconnect the HECU connector (C60).
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Measure the voltage between the terminal 17 of HECU harness connector (C60) and chassis ground.
 - Specification: Battery voltage

BR-222

5. Is the voltage measured within specification?

YES

► Go to "Ground Circuit Inspection" procedure.

NO

► Check the fuse 30A. If it is burnt, replace it. When the fuse is normal, check open of terminal 17 of ABS control module harness connector and short to ground. Repair it if there is any problem and go to "Verification of Vehicle Repair" procedure.

GROUND CIRCUIT INSPECTION

- 1. Turn the ignition OFF.
- 2. Disconnect the HECU connector (C60).
- 3. Measure the resistance between the terminals 18, 19 of HECU harness connector (C60) and chassis ground.
 - Specification: Continuity
- 4. Is the resistance measured within specification?

YES

- ► Go to "Component Inspection" procedure.
- NO

► Check open or poor contact between the solenoid valve ground of ABS control module harness connector and chassis ground. And go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

SUDWAB9001L

0038 Valve Relay(Can't Switch On)

COMPONENT LOCATION

GENERAL DESCRIPTION

DTC DETECTING CONDITION

HECU supplies the battery voltage to all solenoid valves through the valve relay controlled by ECU. All solenoid valves and valve relay are installed in HECU.

DTC DESCRIPTION

HECU determines whether the switch that operates the valve relay is turned on/off while the power to the system is on. If the switch ON does not work, a fail code is output.

Item	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring			•	Replace ECU.
Enable Conditions	Ignition ON	Ignition ON			
Threshold Value	Valve relay switch is no	Valve relay switch is not turned ON.			
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL	Yes			

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of

Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

CONTROL CIRCUIT INSPECTION

Control Power Inspection

- 1. Turn the ignition OFF.
- 2. Disconnect the HECU connector (C60).
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Measure the voltage between the terminal 17 of HECU harness connector (C60) and chassis ground.
 - Specification: Battery voltage

BR-224

5. Is the voltage measured within specification?

YES

► Go to "Ground Circuit Inspection" procedure.

NO

► Check the fuse 30A. If it is burnt, replace it. When the fuse is normal, check open of terminal 17 of ABS control module harness connector and short to ground. Repair it if there is any problem and go to "Verification of Vehicle Repair" procedure.

GROUND CIRCUIT INSPECTION

- 1. Turn the ignition OFF.
- 2. Disconnect the HECU connector (C60).
- 3. Measure the resistance between the terminals 18, 19 of HECU harness connector (C60) and chassis ground.
 - Specification: Continuity
- 4. Is the resistance measured within specification?

YES

► Go to "Component Inspection" procedure.

NO

► Check open or poor contact between the solenoid valve ground of ABS control module harness connector and chassis ground. And go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

▶ There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9001L

0039 Reference Ground Connection

COMPONENT LOCATION

GENERAL DESCRIPTION

It is used as a ground connection to find out the basic value of the ground connection of HECU.

DTC DESCRIPTION

If the difference between the ground connection of HECU and that of the reference is more than -1.6 V and smaller than 1.0 V, a fail code is output.

DTC DETECTING CONDITION

Item	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring	Signal monitoring			
Enable Conditions	Ignition ON				
Threshold Value	Difference between ECU ground and reference should be higher than - 1.6 V and lower than 1.0 V $$				
Diagnosis Time	Below 500 ms				
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL	Yes			

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and then go to "Verification of

Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

GROUND CIRCUIT INSPECTION

- 1. Turn the ignition OFF.
- 2. Measure the resistance between the terminals 6 of HECU harness connector (C60) and chassis ground.
 - Specification: Continuity
- 3. Is the resistance measured within specification?

YES

▶ Replace with a known-good HECU. If there is no

BR-226

problem, replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

▶ Repair open between the reference ground of ABS control module harness connector and chassis ground and check poor contact. If there is any problem repair poor contact. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

003B ABS Warning Light Bulb

COMPONENT LOCATION

GENERAL DESCRIPTION

The ABS warning light, which is installed in the dashboard, is turned on to notify the driver when ABS control is malfunctioning and requires repairing.

DTC DESCRIPTION

HECU outputs a fail code when the ABS warning light is not turned on.

DTC DETECTING CONDITION

Item			Possible Cause		
DTC Strategy	Signal monitoring	Signal monitoring			
Enable Conditions	Ignition ON				connector and wiri-
Threshold Value	ABS warning lamp does not work.].	Open of control cir-
Diagnosis Time	5,000 ms				cuit.
Fail Safe	Fuel Cut	No	The ABS function		rning lamp relay.
	Fuel Limit Yes works normally.	works normally.			
	MIL	Yes			

SPECIFICATION

ABS warning lamp relay coil resistance

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON. Leave the engine OFF.
- 3. Select the data "Actuation test".

DUAL DISPLAY							
			CURRE	NT DAT	ľA		
×	ECU 3	SUPPLY	VOLTA	GE	22.7	V	
×	DBR 1	RELAY			OFF		
×	ABS V	JARNI NO	G LAMP	I	OFF		
×	BRAKI	E WARNI	ING LA	MP	OFF		Ŧ
		f	ACTUAT	ION TH	EST		
f	ABS-₩A	ARNI NG	LAMP				
	1 SECONDS WARNING LAMP CHECK						
1	KEY.ON / VEH.STOP ENG. STOP						
	STRT		FIX	LIN	3		

- 200 ~ 450 Ω (At 20°C)
- 4. Select "ABS warning lamp" and perform actuation test..
 - Specification: Normal if the warning lamp in the gauge comes on.

DUAL DISPLAY						
CURRE	NT DATA					
* ECU SUPPLY VOLTA	GE 22.7 V 🔺					
× DBR RELAY	OFF					
× ABS WARNING LAMP	ON					
* BRAKE WARNING LA	MP OFF					
ACTUAT	ION TEST					
ABS-WARNING LAMP						
1 SECONDS	WARNING LAMP CHECK					
KEY.ON / VEH.STOP ENG. STOP						
STRT FIX	LINE					

SUDWAB9038L

- 5. Does the warning lamp in the gauge come on?
 - ► There may be the defective HECU or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.
 - ▶ Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

► Go to next procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

NO

YES

ABS

► Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

CONTROL CIRCUIT INSPECTION

- Control Circuit inspection
- 1. Turn the ignition OFF.
- 2. Disconnect the HECU connector (C60).
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Ground the terminal 21 of HECU harness connector (C60) to chassis ground.
- 5. Does the ABS warning lamp come on?

YES

► Go to "Control Open Inspection" procedure.

NO

▶ Remove the gauge panel and check the bulb condition of ABS warning lamp.

▶ Replace the bulb if necessary. If normal, check open circuit between meter fuse and warning lamp.

▶ Repair it as necessary. Go to "Verification of Vehicle Repair" procedure.

Control Open Inspection

- 1. Turn the ignition OFF.
- 2. Disconnect the ABS warning lamp relay (M101) and HECU (C60).
- Measure the resistance between the terminal 3 of relay harness connector (M101) and the terminal 21 of HECU harness connector (C60).

Specification: Continuity

4. Is the resistance measured within specification?

YES

► Go to "Component Inspection" procedure.

NO

▶ Repair open circuit between the terminal 3 of relay harness connector (M101) and the terminal 21 of HECU harness connector (C60) and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION

- 1. Turn the ignition OFF.
- 2. Disconnect the ABS warning lamp relay connector (M101).
- 3. Measure the resistance between terminals 3 and 5 of ABS warning lamp relay component.

Specification: ABS warning lamp relay coil resistance: $200 \sim 450 \Omega$ (At $20^{\circ}C$)

- Measure the resistance between terminals 1 and 4 of ABS warning lamp relay while applying and cutting off B+ power to terminals 3 and 5 of ABS warning lamp relay.
 - Specification:

Continuity (When applying power)

Infinite (When cutting off power)

5. Is the resistance measured within specification?

YES

Go to "Verification of Vehicle Repair" procedure.

► Replace the relay and go to "Verification of Vehicle Repair" procedure.

► Repeat "Component Inspection" procedure several times.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

003C Brake Warning Light Bulb

COMPONENT LOCATION

GENERAL DESCRIPTION

The BRAKE warning light, which is installed in the dashboard, is turned on to notify the driver when the vehicle is abnormal and requires repairing.

DTC DESCRIPTION

HECU outputs a fail code when the break warning light is not turned on even though the vehicle is in the conditions in which the light should be on.

DTC DETECTING CONDITION

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring			•	Poor connection of
Enable Conditions	Ignition ON		connector and wiri-		
Threshold Value	ABS warning lamp does not work.				Open of control cir-
Diagnosis Time	5,000 ms				cuit. Dofoctivo brako w
Fail Safe	Fuel Cut	No	The ABS function	•	arning lamp relay.
	Fuel Limit	Yes	works normally.		
	MIL	Yes			

SPECIFICATION

Brake warning lamp relay coil resistance

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON. Leave the engine OFF.
- 3. Select the data "Actuation test".

	DUAL DISPLAY							
			CURRE	NT	DATA	ì		
×	ECU	SUPPLY	VOLTA	GE		22.7	V	
×	DBR	RELAY				OFF		
×	ABS	WARNING	G LAMP	ı –		OFF		
×	BRAK	E WARNI	ING LA	MP		OFF		₹
		f	ACTUAT	I 01	I TES	ST		
1	BRAKE	WARNI	NG LAM	P				
	1 S	ECONDS		ļ	JARN I	NG LA	MP CHE	СК
	KEY.ON / VEH.STOP ENG. STOP							
	STRT		FIX] []	INE			

- 200 ~ 450 Ω (At 20℃)
- 4. Select "Brake warning lamp" and perform actuation test.
 - Specification: Normal if the warning lamp in the gauge comes on.

DU	AL DISPLAY				
CU	RRENT DATA				
* ECU SUPPLY VO	LTAGE 22	2.7 V 🔺			
× DBR RELAY	OI	F			
× ABS WARNING L	AMP OI	F _			
🗶 BRAKE WARNING	LAMP ON				
ACT	JATION TEST				
BRAKE WARNING	LAMP				
1 SECONDS	WARNING	LAMP CHECK			
KEY.ON / VEH.STOP ENG. STOP					
отрт т					

SUDWAB9039L

- 5. Does the warning lamp in the gauge come on?
 - ► There may be the defective HECU or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.
 - ▶ Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

► Go to next procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

NO

BR-232

YES

► Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

CONTROL CIRCUIT INSPECTION

- Control Circuit inspection
- 1. Turn the ignition OFF.
- 2. Disconnect the HECU connector (C60).
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Ground the terminal 21 of HECU harness connector (C60) to chassis ground.
- 5. Does the brake warning lamp come on?

YES

► Go to "Control Open Inspection" procedure.

NO

▶ Remove the gauge panel and check the bulb condition of brake warning lamp.

▶ Replace the bulb if necessary. If normal, check open circuit between meter fuse and warning lamp.

▶ Repair it as necessary. Go to "Verification of Vehicle Repair" procedure.

Control Open Inspection

- 1. Turn the ignition OFF.
- 2. Disconnect the brake warning lamp relay (M102) and HECU (C60).
- Measure the resistance between the terminal 3 of relay connector (M102) and the terminal 21 of HECU harness connector (C60).

Specification: Continuity

- 4. Is the resistance measured within specification?
 - ► Go to "Component Inspection" procedure.

NO

▶ Repair open circuit between terminal of HECU harness connector and terminal of brake warning lamp relay control harness connector and go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION

- 1. Turn the ignition OFF.
- 2. Disconnect the brake warning lamp relay connector (M102).
- 3. Measure the resistance between terminals 3 and 5 of brake warning lamp relay component.

Specification: Brake warning lamp relay coil resistance: $200 \sim 450 \Omega$ (At $20^{\circ}C$)

 Measure the resistance between terminals 1 and 4 while applying and cutting off B+ power to terminals 3 and 5 of brake warning lamp relay.

Specification:

Continuity (When applying power)

Infinite (When cutting off power)

5. Is the resistance measured within specification?

YES

► Go to "Verification of Vehicle Repair" procedure.

NO

- ► Replace the relay and go to "Verification of Vehicle Repair" procedure.
- ► Repeat "Component Inspection" procedure several times.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9006L

003D High Voltage

COMPONENT LOCATION

Battery & Charging system

GENERAL DESCRIPTION

The battery voltage of a normal vehicle fluctuates between 23.5 V and 28.5 V.

DTC DESCRIPTION

Particularly, the voltage fluctuation is closely related to the pump and solenoids related to ABS, and HECU monitors such a battery voltage change.

DTC DETECTING CONDITION

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring	•	Alternator		
Enable Conditions	Ignition ON	•	Battery		
Threshold Value	Voltage is higher than 3				
Diagnosis Time	Below 500 ms				
Fail Safe	Fuel Cut	No	The ABS function		
	Fuel Limit	Yes	works normally.		
	MIL	Yes			

SPECIFICATION

Regulator temperature(℃)	Regulating voltage(V)			
20 ~ 30	27.5~28.5 V			

BR-234

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

CONTROL CIRCUIT INSPECTION

Alternator Connector Supply Power Inspection

- 1. Leave the alternator connector connected.
- 2. Turn the ignition ON. Leave the engine ON.
- 3. Measure the voltage of terminal 1 of alternator connector.
 - Specification: Charging voltage B+ V
- 4. Is the voltage measured within specification?

YES

► Go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Alternator B+ Cable Voltage Drop Inspection" procedure.

Alternator B⁺ Cable Voltage Drop Inspection

- 1. Run the engine.
- Measure the voltage drop between the terminal of alternator B+ and the terminal of battery B+. (Connect terminal + (positive) of multi-meter to terminal B+ of alternator, terminal - (negative) of multi-meter to terminal B+ of battery.)

Specification: Within 200 mV

3. Is the voltage drop measured within specification?

YES

NO

► Go to "Component Inspection" procedure.

► Check the corrosion and degradation of alternator B+ cable terminal and replace the cable as necessary.

COMPONENT INSPECTION

Alternator Charging Voltage Inspection

- 1. Turn the ignition OFF. Leave the engine OFF.
- 2. Check the belt tension of alternator.
- 3. Check battery terminal, fusible link, alternator B+ terminal for looseness and corrosion.
- 4. Start the engine.
- 5. Operate electric system such as head lamp, hot-wire, blower motor etc.
- 6.
- Specification:

Regulator temperature(°C)	Regulating voltage(V)				
$20 \sim 30$	25.5~26.5 V				

Measure battery voltage at engine 750 rpm or higher.

7. Is the voltage measured within specification?

YES

- Go to "Verification of Vehicle Repair" procedure.
 NO
- ▶ Replace the regulator and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

System OK

Brake System

SUDWAB9002L

003F Sensor Right Hand Front(Tire Combination)

COMPONENT LOCATION

GENERAL DESCRIPTION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

DTC DETECTING CONDITION

DTC DESCRIPTION

HECU outputs a fail code when the tire alignment correction value is over 20% while the wheel size is abnormal or the number of teeth in the tone wheel is different.

Item		Detecting Condition				
DTC Strategy	Signal monitoring	Signal monitoring				
Enable Conditions	Ignition ON	Ignition ON				
Threshold Value	Tire alignment cor	Tire alignment correction factor > 20%				
Diagnosis Time	Below 5 minutes					of teeth on tone ri-
Fail Safe	Fuel Cut	No		ABS function temp	-	ngs.
	Fuel Limit	Yes		orarily disabled for		
	MIL Yes					

MONITOR SCAN TOOL DATA

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.
- 3. Drive the vehicle straight at a constant speed in the normal road surface.
- 4. Monitor the data "Wheel speed RHF" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

5. Is the data measured within specification?

YES

► There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Terminal & Connector Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

Check Tire Size

- 1. Turn the ignition OFF.
- 2. Check tires and wheel size.
- 3. Are tires installed within specification?

YES

Go to next procedure.

NO

▶ Replace tires and wheel size in specification and go to "Verification of Vehicle Repair" procedure.

Check the Number of Teeth on Tone Rings

- 1. Turn the ignition OFF.
- 2. Check the number of teeth on right hand front tone ring.
- 3. Is the number of tone wheel correct?

YES

► Go to "Verification of Vehicle Repair" procedure.

NO

▶ Repair or replace the tone ring and check the condition of vehicle. If normal, replace with new one and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

► System OK

SUDWAB9048L

0040 Sensor Left Hand Rear(Tire Combination)

COMPONENT LOCATION

GENERAL DESCRIPTION

DTC DETECTING CONDITION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

DTC DESCRIPTION

HECU outputs a fail code when the tire alignment correction value is over 20% while the wheel size is abnormal or the number of teeth in the tone wheel is different.

Item			Possible Cause				
DTC Strategy	Signal monitoring	Signal monitoring					
Enable Conditions	Ignition ON	Ignition ON					
Threshold Value	Tire alignment correcti	Tire alignment correction factor>20%					
Diagnosis Time	Below 5 minutes		of teeth on tone ri-				
Fail Safe	Fuel Cut	No	ABS function temp-		ngs.		
	Fuel Limit	Yes	orarily disabled for concerned wheel				
	MIL	Yes					

SPECIFICATION

Wheel sensor resistance	830 ~ 2,100 Ω (At 20 °C)		
Air gap	0.2 ~ 1.7 mm		

MONITOR SCAN TOOL DATA

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.
- 3. Drive the vehicle straight at a constant speed in the normal road surface.

	1.2. CURRENT	DATA	0 8/22
×	SENSOR VOLTAGE RHF	4.2	V
×	SENSOR VOLTAGE LHR	0.6	V
×	SENSOR VOLTAGE LHF	0.6	v 🖕
×	SENSOR VOLTAGE RHR	1.2	v
×	WHEEL SPEED RHF	10.6	Km/h
×	WHEEL SPEED LHR	10.6	Km∕h
×	WHEEL SPEED LHF	10.8	Km∕h
×	WHEEL SPEED RHR	10.6	Kn∕h
			T
	FIX PART TOT HELF	P LINE	REC

5. Is the data measured within specification?

YES

► There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

▶ Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Terminal & Connector Inspection" procedure.

4. Monitor the data "Wheel speed LHR" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

			1.	2.	CUR	RENT	DA	TA	08/3	Z2
×	SENSO	R	VOLT	AGE	RH	F		0.8	Ų	
×	SENSO	R	VOLT	AGE	E LH	R		4.7	V	
×	SENSO	R	VOLT	AGE	E LH	F		0.0	Ų	
×	SENSO	R	VOLT	AGE	RH	R		0.7	Ų	
×	WHEEL	, S.	PEEI) RH	IF			21.0	Km∕h	
×	WHEEL	S	PEED	I LH	łR			20.7	Km∕h	
×	WHEEL	S	PEED) LH	ſF			21.0	Km∕h	
×	WHEEL	S	PEED	R	IR			20.9	Km∕h	
										Ŧ
	FIX	P	ART	TC)T	HEL	P [LINE	REC	

SUDWAB9008L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Turn the ignition OFF.
- 2. Check tires and wheel size.
- 3. Are tires installed within specification?

YES

► Go to next procedure.

▶ Replace tires and wheel size in specification and go to "Verification of Vehicle Repair" procedure.

Check the Number of Teeth on Tone Rings

- 1. Turn the ignition OFF.
- 2. Check the number of teeth on left hand rear tone ring.
- 3. Is the number of tone wheel correct?

YES

Go to "Verification of Vehicle Repair" procedure.

▶ Repair or replace the tone ring and check the condition of vehicle. If normal, replace with new one and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis.Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

SUDWAB9049L

0041 Sensor Left Hand Front(Tire Combination)

COMPONENT LOCATION

GENERAL DESCRIPTION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

HECH outputs a fail of

HECU outputs a fail code when the tire alignment correction value is over 20% while the wheel size is abnormal or the number of teeth in the tone wheel is different.

ltem			Possible Cause			
DTC Strategy	Signal monitoring	Signal monitoring				
Enable Conditions	Ignition ON	is v on • Ch of	is within specificati- on range. Check the number of teeth on tone ri-			
Threshold Value	Tire alignment correction					
Diagnosis Time	Below 5 minutes					
Fail Safe	Fuel Cut	No	ABS function tem-		ngs.	
	Fuel Limit	Yes	porarily disabled f-			
	MIL Yes el.		el.			

DTC DETECTING CONDITION

MONITOR SCAN TOOL DATA

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.
- 3. Drive the vehicle straight at a constant speed in the normal road surface.

	1.2. CURRENT DAT	A 0	8/22
×	SENSOR VOLTAGE RHF 4	.2 V	
×	SENSOR VOLTAGE LHR Ø	.6 V	
×	SENSOR VOLTAGE LHF Ø	.6 V	
×	SENSOR VOLTAGE RHR 1	.2 V	
×	WHEEL SPEED RHF 1	0.6 Km	/h
×	WHEEL SPEED LHR 1	0.6 Km	⁄h
×	WHEEL SPEED LHF 1	0.8 Km	⁄h
×	WHEEL SPEED RHB 1	0.6 Km	⁄h
			T
	FIX PART TOT HELP L	I NE RE	с

5. Is the data measured within specification?

YES

► There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

▶ Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Terminal & Connector Inspection" procedure.

4. Monitor the data "Wheel speed LHF" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

			1.	2.	CUR	RENT	DA	TA	08/3	Z2
×	SENSO	R	VOLT	AGE	RH	F		0.8	Ų	
×	SENSO	R	VOLT	AGE	E LH	R		4.7	V	
×	SENSO	R	VOLT	AGE	E LH	F		0.0	Ų	
×	SENSO	R	VOLT	AGE	RH	R		0.7	Ų	
×	WHEEL	, S.	PEEI) RH	IF			21.0	Km∕h	
×	WHEEL	S	PEED	I LH	łR			20.7	Km∕h	
×	WHEEL	S	PEED) LH	ſF			21.0	Km∕h	
×	WHEEL	S	PEED	R	IR			20.9	Km∕h	
										Ŧ
	FIX	P	ART	TC)T	HEL	P [LINE	REC	

SUDWAB9008L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Turn the ignition OFF.
- 2. Check tires and wheel size.
- 3. Are tires installed within specification?

YES

▶ Go to next procedure.

▶ Replace tires and wheel size in specification and go to "Verification of Vehicle Repair" procedure.

Check the Number of Teeth on Tone Rings

- 1. Turn the ignition OFF.
- 2. Check the number of teeth on left hand rear tone ring.
- 3. Is the number of tone wheel correct?

YES

- Go to "Verification of Vehicle Repair" procedure.
- ▶ Repair or replace the tone ring and check the condition of vehicle. If normal, replace with new one and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

0042 Sensor Right Hand Rear(Tire Combination)

COMPONENT LOCATION

GENERAL DESCRIPTION

DTC DETECTING CONDITION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

DTC DESCRIPTION

HECU outputs a fail code when the tire alignment correction value is over 20% while the wheel size is abnormal or the number of teeth in the tone wheel is different.

ltem			Possible Cause		
DTC Strategy	Signal monitoring		•	Check that tire size	
Enable Conditions	Ignition ON		is within specificati-		
Threshold Value	Tire alignment correction	• Ch	Check the number		
Diagnosis Time	Below 5 minutes		of teeth on tone ri-		
Fail Safe	Fuel Cut	No	ABS function tem- porarily disabled f- or concerned when	- -	ngs.
	Fuel Limit	Yes			
	MIL	Yes	el		

SPECIFICATION

Wheel sensor resistance	830 ~ 2,100 Ω (At 20 °C)		
Air gap	$0.2 \sim 1.7 \text{ mm}$		

SUDWAB9050L

MONITOR SCAN TOOL DATA

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.
- 3. Drive the vehicle straight at a constant speed in the normal road surface.

	1.2. CURRENT D	ATA	0 8/2	22
×	SENSOR VOLTAGE RHF	4 .2	U	
×	SENSOR VOLTAGE LHR	0.6	V	
×	SENSOR VOLTAGE LHF	0.6	V	
×	SENSOR VOLTAGE RHR	1.2	V	
×	WHEEL SPEED RHF	10.6	Km/h	
×	WHEEL SPEED LHR	10.6	Km∕h	
×	WHEEL SPEED LHF	10.8	Km∕h	
×	WHEEL SPEED RHR	10.6	Kn∕'h	
				Ŧ
	FIX PART TOT HELP	LINE	REC	

5. Is the data measured within specification?

YES

- ► There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.
- ▶ Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Terminal & Connector Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

4. Monitor the data "Wheel speed RHR" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

		1	2 .	CUR	RENT	DATA	08/	22
×	SENSO	R VOI	.TAG	E RHI	F	0.8	Ų	
×	SENSO	R VOI	.TAG	E LHI	R	4.7	V	
×	SENSO	R VOI	.TAG	E LHI	F	0.0	Ų	
×	SENSO	R VOI	.TAG	E RHI	R	0.7	V	
×	WHEEL	SPEI	ED R	HF		21.6	0 Km∕h	
×	WHEEL	SPER	D LI	HR		20.7	7 Km∕h	
×	WHEEL	SPER	D LI	HF		21.6	ð Km∕h	
×	WHEEL	SPER	D R	HR		20.9	9 Km∕h	
								T
	FIX	PART	' T	ЭT	HELI	P LINI	E REC	

SUDWAB9008L

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Turn the ignition OFF.
- 2. Check tires and wheel size.
- 3. Are tires installed within specification?

YES

▶ Go to next procedure.

NO

▶ Replace tires and wheel size in specification and go to "Verification of Vehicle Repair" procedure.

Check the Number of Teeth on Tone Rings

- 1. Turn the ignition OFF.
- 2. Check the number of teeth on right hand rear tone ring.
- 3. Is the number of tone wheel correct?

YES

Go to "Verification of Vehicle Repair" procedure.
 NO

▶ Repair or replace the tone ring and check the condition of vehicle. If normal, replace with new one and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9001L

0043 Pump Motor Does Not Switch On

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and failure memory circuit that memorizes any а malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

HECU continues to monitor the internal components, such as memory, input and output circuits. In case of an error during the operation of the control system, HECU determines whether it is a failure state and outputs a fail code.

DTC DETECTING CONDITION

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring				Replace ECU.
Enable Conditions Ignition ON					
Threshold Value	When the pump motor in HECU does not work				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL	Yes			

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test"

4. Check the pump motor for operation when activating the actuator.

■ Specification: Normal if the activating sound is heard.

1.	5. ACTUATION TEST	13/13				
PUMP						
DURATION	1 SECONDS					
METHOD	METHOD SOUND CHECK					
CONDITION	KEY.ON / VEH.STOP					
	ENG. STOP					
PRESS [STRT], IF YOU ARE READY !						
STRT						

SUDWAB9040L

5. Does the valve activate normally?

YES

▶ There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

► And go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Component Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

▶ Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9001L

0044 Pump Motor Does Not Switch Off

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and failure memory circuit that memorizes any а malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

HECU continues to monitor the internal components, such as memory, input and output circuits. In case of an error during the operation of the control system, HECU determines whether it is a failure state and outputs a fail code.

DTC DETECTING CONDITION

ltem	Detecting Condition			Possible Cause
DTC Strategy	Signal monitoring	Replace ECU.		
Enable Conditions				
Threshold Value	When the pump motor i			
Diagnosis Time	Below 1,000 ms			
Fail Safe	Fuel Cut	No	ABS disabled	
	Fuel Limit	Yes		
	MIL	Yes		

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test".

4. Check the pump motor for operation when activating the actuator.

■ Specification: Normal if the activating sound is heard.

1.	5. ACTUATION TEST	13/13				
PUMP						
DURATION	1 SECONDS					
METHOD	METHOD SOUND CHECK					
CONDITION	KEY.ON / VEH.STOP					
	ENG. STOP					
PRESS [STRT], IF YOU ARE READY !						
STRT						

SUDWAB9041L

5. Does the valve activate normally?

YES

▶ There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

► And go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Component Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

ABS

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9001L

0045 Pump Motor Does Not Turn

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and failure memory circuit that memorizes any а malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

HECU continues to monitor the internal components, such as memory, input and output circuits. In case of an error during the operation of the control system, HECU determines whether it is a failure state and outputs a fail code.
ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring	Signal monitoring			Replace ECU.
Enable Conditions	Ignition ON				
Threshold Value	When the pump motor in HECU does not work				
Diagnosis Time	1,000 ms				
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL	Yes			

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test".

4. Check the pump motor for operation when activating the actuator.

■ Specification: Normal if the activating sound is heard.

1.5. ACTUATION TEST 13/13						
PUMP						
DURATION	1 SECONDS					
METHOD	METHOD SOUND CHECK					
CONDITION	CONDITION KEY.ON / VEH.STOP					
	ENG. STOP					
PRESS [STRT], IF YOU ARE READY !						
STRT						

SUDWAB9042L

5. Does the valve activate normally?

YES

▶ There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

► And go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Component Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

▶ Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9001L

0046 Pump Motor Supply Voltage Missing

COMPONENT LOCATION

GENERAL DESCRIPTION

HECU supplies the battery voltage to all solenoid valves through the valve relay controlled by ECU. All solenoid valves and valve relay are installed in HECU.

DTC DETECTING CONDITION

DTC DESCRIPTION

HECU monitors the incoming system power, and if the pump motor does not function due to no power, it outputs a fail code.

Item	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring	Signal monitoring			Replace ECU.
Enable Conditions	Ignition ON			•	 Poor contact in co- nnector or wiring d- amage.
Threshold Value	When there is no power in pump motor				
Diagnosis Time	Below 1,000 ms]	
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL	Yes	1		

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

► Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

CONTROL CIRCUIT INSPECTION

Control Circuit inspection

- 1. Turn the ignition OFF.
- 2. Disconnect the HECU connector (C60).
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Measure the voltage between the terminal 16 of HECU connector (C60) and chassis ground.
 - Specification: Battery voltage
- 5. Is the voltage measured within specification?

YES

▶ Go to "Ground Circuit Inspection" procedure.

NO

► Check the fuse 30A. If it is burnt, replace it. When the fuse is normal, check open circuit between terminal (+) of battery and terminal 16 of HECU connector (C60) and short to ground. Repair if there is any problem and go to "Verification of Vehicle Repair" procedure.

GROUND CIRCUIT INSPECTION

- 1. Turn the ignition OFF.
- 2. Disconnect the HECU connector (C60).
- 3. Measure the resistance between the terminals 18, 19 of HECU harness connector (C60) and chassis ground.
 - Specification: Continuity
- 4. Is the resistance measured within specification?
 - ► Go to "Component Inspection" procedure.

NO

► Check open or poor contact between the solenoid valve ground of HECU harness connector and chassis ground. And go to "Verification of Vehicle Repair" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

▶ There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9001L

0047 Pump Motor Relay Voltage Missing

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and failure memory circuit that memorizes any а malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

HECU continues to monitor the internal components, such as memory, input and output circuits. In case of an error during the operation of the control system, HECU determines whether it is a failure state and outputs a fail code.

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring	Signal monitoring			
Enable Conditions	Ignition ON				
Threshold Value	When the pump motor in HECU does not work				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL	Yes			

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test".

4. Check the pump motor for operation when activating the actuator.

■ Specification: Normal if the activating sound is heard.

1.5. ACTUATION TEST 13/13							
PUMP							
DURATION	1 SECONDS						
METHOD	METHOD SOUND CHECK						
CONDITION	CONDITION KEY.ON / VEH.STOP						
	ENG. STOP						
PRESS [STRT], IF YOU ARE READY !							
STRT							

SUDWAB9043L

5. Does the valve activate normally?

YES

▶ There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

► And go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Component Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

► Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

ABS

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

0049 Sensor Right Hand Front(No Trigger At All)

COMPONENT LOCATION

SUDWAB9002L

GENERAL DESCRIPTION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

DTC DESCRIPTION

HECU continues to monitor the input signal from the wheel sensor. If the ABS control state changes abnormally when the sensor output voltage becomes low because the air gap in the front right wheel sensor is too big, HECU determines it as a failure state and outputs a fail code.

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring	Signal monitoring			
Enable Conditions	Ignition ON				Check bearing play
Threshold Value	.Vehicle speed > 15.0kph.Air gap 0.2 ~ 1.7mm				out.
Diagnosis Time	1,000 ms			•	Check tone ring for
Fail Safe	Fuel Cut	No	ABS function disa-	a- d	uanage.
	Fuel Limit	Yes	bled for concerned		
	MIL	Yes	WIECI		

SPECIFICATION

Wheel sensor resistance	830 ~ 2,100 Ω (At 20 °C)
Air gap	0.2 ~ 1.7 mm

MONITOR SCAN TOOL DATA

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.
- 3. Drive the vehicle straight at a constant speed in the normal road surface.

	1.2. CURRENT DATA 08/22						
×	SENSOR VOLTAGE RHF	4 .2	V				
×	SENSOR VOLTAGE LHR	0.6	V				
×	SENSOR VOLTAGE LHF	0.6	V	_			
×	SENSOR VOLTAGE RHR	1.2	V				
×	WHEEL SPEED RHF	10.6	Km/h				
×	WHEEL SPEED LHR	10.6	Km∕h				
×	WHEEL SPEED LHF	10.8	Km∕h				
×	WHEEL SPEED RHR	10.6	Kn∕h				
				Ŧ			
	FIX PART TOT HELP	LINE	REC				

5. Is the data measured within specification?

YES

▶ There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Terminal & Connector Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.

4. Monitor the data "Wheel speed RHF" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

	1.2. CURRENT DATA 08/2							
			A					
×	SENSOR VOLTAGE RHF	0.8	U					
×	SENSOR VOLTAGE LHR	4.7	V					
×	SENSOR VOLTAGE LHF	0.0	V 📕					
×	SENSOR VOLTAGE RHR	0.7	v					
×	WHEEL SPEED RHF	21.0	Km∕h					
×	WHEEL SPEED LHR	20.7	Km∕h					
×	WHEEL SPEED LHF	21.0	Km∕h					
×	WHEEL SPEED RHR	20.9	Km∕h					
	FIX PART TOT HEL	P LINE	REC					

SUDWAB9008L

3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION Sensor Air Gap Inspection

- 1. Turn the ignition OFF.
- 2. Check the air gap between right hand front tone wheel and wheel sensor with a thickness gauge.
 - Specification: 0.2~1.7 mm
- 3. Is the value measured within specification?

YES

► Go to next procedure.

NO

▶ Repair it after checking wheel sensor installation condition and go to "Verification of Vehicle Repair" procedure.

▶ Repair or replace it after checking the condition of rotor and wheel bearing and go to "Verification of

BR-262

Vehicle Repair" procedure.

► Adjust it after checking the air gap between wheel sensor and rotor and go to "Verification of Vehicle Repair" procedure.

Right Hand Front Wheel Sensor Inspection

- 1. Turn the ignition OFF.
- 2. Disconnect the right hand front when sensor connector.
- 3. Measure the resistance between positive (+) and negative (-) of the right hand front wheel sensor (C30).

■ Specification: 830 ~ 2,100 Ω (At 20[°]C)

4. Is the resistance measured within specification?

YES

► After checking the HECU for contamination or damage, install a known-good HECU and check it good or not.

▶ Replace the HECU if the vehicle is normal condition and go to "Verification of Vehicle Repair" procedure.

NO

► Replace the sensor if the vehicle is normal after temporarily installing a known-good sensor and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

SUDWAB9048L

004A Sensor Left Hand Rear(No Trigger At All)

COMPONENT LOCATION

GENERAL DESCRIPTION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

DTC DESCRIPTION

HECU continues to monitor the input signal from the wheel sensor. If the ABS control state changes abnormally when the sensor output voltage becomes low because the air gap in the rear left wheel sensor is too big, HECU determines it as a failure state and outputs a fail code.

DTC DETECTING C	ONDITION
	r

ltem	Detecting Condition				Possible Cause	
DTC Strategy	Signal monitoring	Signal monitoring			•	Check air gap.
Enable Conditions	Ignition ON]•	Check bearing play	
Threshold Value	.Vehicle speed > 15.0 kph.Air gap 0.2 ~ 1.7 mm				out.	
Diagnosis Time	Below 1,000 ms			•	Check tone ring for	
Fail Safe	Fuel Cut	No		ABS function disa-	-]	uamage.
	Fuel Limit	Yes		bled for concerned		
	MIL	Yes		WIICEI		

SPECIFICATION

Wheel sensor resistance	830 ~ 2,100 Ω (At 20 °C)
Air gap	0.2 ~ 1.7 mm

MONITOR SCAN TOOL DATA

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.
- 3. Drive the vehicle straight at a constant speed in the normal road surface.

	1.2. CURRENT D	ATA	Ø 8/22
×	SENSOR VOLTAGE RHF	4.2	U
×	SENSOR VOLTAGE LHR	0.6	V
×	SENSOR VOLTAGE LHF	0.6	V 🖕
×	SENSOR VOLTAGE RHR	1.2	v
×	WHEEL SPEED RHF	10.6	Km/h
×	WHEEL SPEED LHR	10.6	Km∕h
×	WHEEL SPEED LHF	10.8	Km⁄h
×	WHEEL SPEED RHR	10.6	Km∕h
			T
	FIX PART TOT HELP	LINE	REC

5. Is the data measured within specification?

YES

► There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

▶ Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Terminal & Connector Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

4. Monitor the data "Wheel speed LHR" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

		1.2	z. (URRENT	DATA	08/2	22
×	SENSOR	VOLT	AGE	RHF	0.8	U	
×	SENSOR	VOLT	ήGE	LHR	4.7	V	
×	SENSOR	VOLTA	AGE	LHF	0.0	U	
×	SENSOR	VOLTA	AGE	RHR	0.7	V	_
×	WHEEL	SPEED	RHJ	F	21.0	Km∕h	
×	WHEEL :	SPEED	LHE	3	20.7	Km⁄h	
×	WHEEL :	SPEED	LHE	7	21.0	Km∕h	
×	WHEEL :	SPEED	RHE	3	20.9	Km∕h	
							T
	FIX]	PART	TO	r HELI	P LINE	REC	

SUDWAB9008L

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

Sensor Air Gap Inspection

- 1. Turn the ignition OFF.
- 2. Check the air gap between left hand rear tone wheel and wheel sensor with a thickness gauge.
 - Specification: 0.2~1.7 mm
- 3. Is the value measured within specification?

YES

Go to next procedure.

NO

▶ Repair it after checking wheel sensor installation condition and go to "Verification of Vehicle Repair" procedure.

▶ Repair or replace it after checking the condition of rotor and wheel bearing and go to "Verification of Vehicle Repair" procedure.

► Adjust it after checking the air gap between wheel sensor and rotor and go to "Verification of Vehicle

Repair" procedure.

Left Hand Rear Wheel Sensor Inspection

- 1. Turn the ignition OFF.
- 2. Disconnect the left hand rear connector (C37).
- 3. Measure the resistance between terminal positive (+) and terminal negative (-) of the left hand rear wheel sensor (C37).
 - Specification: 830 \sim 2100 Ω (At 20 $^{\circ}$ C)
- 4. Is the resistance measured within specification?

YES

► After checking the HECU for contamination or damage, install a known-good HECU and check it good or not.

▶ Replace the HECU if the vehicle is normal condition and go to "Verification of Vehicle Repair" procedure.

NO

► Replace the sensor if the vehicle is normal after temporarily installing a known-good sensor and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

System OK

ABS

SUDWAB9049L

004B Sensor Left Hand Front(No Trigger At All)

COMPONENT LOCATION

GENERAL DESCRIPTION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

DTC DESCRIPTION

HECU continues to monitor the input signal from the wheel sensor. If the ABS control state changes abnormally when the sensor output voltage becomes low because the air gap in the front left wheel sensor is too big, HECU determines it as a failure state and outputs a fail code.

DTC	DETE	CTING	CON	IDIT	ION

Item			Possible Cause		
DTC Strategy	Signal monitoring	•	Check air gap.		
Enable Conditions	Ignition ON	•	Check bearing play		
Threshold Value	.Vehicle speed > 15.0 k		out. Check tone ring for		
Diagnosis Time	Below 1,000 ms	•			
Fail Safe	Fuel Cut	No	ABS function disa-		uamage.
	Fuel Limit	Yes	bled for concerned		
	MIL	Yes			

SPECIFICATION

Wheel sensor resistance	830 ~ 2,100 Ω (At 20 °C)
Air gap	0.2 ~ 1.7 mm

MONITOR SCAN TOOL DATA

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.
- 3. Drive the vehicle straight at a constant speed in the normal road surface.

	1.2. CURRENT DAT	A 0	8/22
×	SENSOR VOLTAGE RHF 4	.2 V	
×	SENSOR VOLTAGE LHR Ø	.6 V	
×	SENSOR VOLTAGE LHF Ø	.6 V	
×	SENSOR VOLTAGE RHR 1	.2 V	
×	WHEEL SPEED RHF 1	0.6 Km	/h
×	WHEEL SPEED LHR 1	0.6 Km	⁄h
×	WHEEL SPEED LHF 1	0.8 Km	⁄h
×	WHEEL SPEED RHB 1	0.6 Km	⁄h
			T
	FIX PART TOT HELP L	I NE RE	с

5. Is the data measured within specification?

YES

► There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

▶ Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Terminal & Connector Inspection" procedure.

4. Monitor the data "Wheel speed LHF" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

			1.	2.	CUR	RENT	DA	TA	08/3	Z2
×	SENSO	R	VOLT	AGE	RH	F		0.8	Ų	
×	SENSO	R	VOLT	AGE	E LH	R		4.7	V	
×	SENSO	R	VOLT	AGE	E LH	F		0.0	Ų	
×	SENSO	R	VOLT	AGE	RH	R		0.7	Ų	
×	WHEEL	, S.	PEEI) RH	IF			21.0	Km∕h	
×	WHEEL	S	PEED	I LH	łR			20.7	Km∕h	
×	WHEEL	S	PEED) LH	ſF			21.0	Km∕h	
×	WHEEL	S	PEED	R	IR			20.9	Km∕h	
										Ŧ
	FIX	P	ART	TC)T	HEL	P [LINE	REC	

SUDWAB9008L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

Left Hand Front Wheel Sensor Inspection

- 1. Turn the ignition OFF.
- 2. Disconnect the left hand front connector (C31).
- Measure the resistance between terminal positive (+) and terminal negative (-) of the left hand front wheel sensor.
 - Specification: 830 ~ 2,100 Ω (At 20°C)
- 4. Is the resistance measured within specification?

YES

► After checking the HECU for contamination or damage, install a known-good HECU and check it good or not.

▶ Replace the HECU if the vehicle is normal condition and go to "Verification of Vehicle Repair" procedure.

NO

► Replace the sensor if the vehicle is normal after temporarily installing a known-good sensor and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9050L

004C Sensor Right Hand Rear(No Trigger At All)

COMPONENT LOCATION

GENERAL DESCRIPTION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

DTC DESCRIPTION

HECU continues to monitor the input signal from the wheel sensor. If the ABS control state changes abnormally when the sensor output voltage becomes low because the air gap in the Rear right wheel sensor is too big, HECU determines it as a failure state and outputs a fail code.

DTC DETECTING	CONDITION
---------------	-----------

Item			Possible Cause			
DTC Strategy	Signal monitoring	Signal monitoring				
Enable Conditions	Ignition ON	Ignition ON				
Threshold Value	.Vehicle speed > 15.0		 Other state out. Check tone ring for democra 			
Diagnosis Time	Below 1,000 ms	•				
Fail Safe	Fuel Cut	No	ABS function disa-		uamage.	
	Fuel Limit	Yes	bled for concerned			
	MIL Yes					

SPECIFICATION

Wheel sensor resistance	830 ~ 2,100 Ω (At 20 °C)
Air gap	0.2 ~ 1.7 mm

MONITOR SCAN TOOL DATA

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.
- 3. Drive the vehicle straight at a constant speed in the normal road surface.

	1.2. CURRENT	DATA	0 8/22
×	SENSOR VOLTAGE RHF	4.2	V
×	SENSOR VOLTAGE LHR	0.6	V
×	SENSOR VOLTAGE LHF	0.6	v 🖕
×	SENSOR VOLTAGE RHR	1.2	v
×	WHEEL SPEED RHF	10.6	Km/h
×	WHEEL SPEED LHR	10.6	Km∕h
×	WHEEL SPEED LHF	10.8	Km∕h
×	WHEEL SPEED RHR	10.6	Kn∕h
			T
	FIX PART TOT HELF	P LINE	REC

5. Is the data measured within specification?

YES

► There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

▶ Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Terminal & Connector Inspection" procedure.

4. Monitor the data "Wheel speed RHR" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

1.2. CURRENT DATA 08/22					22		
×	SENSO	R VOLT	AGE	RHF	0.8	V	
×	SENSO	R VOLT	AGE	LHR	4.7	V	
×	SENSO	R VOLT	AGE	LHF	0.0	V	
×	SENSO	R VOLT	AGE	RHR	0.7	V	
×	WHEEL	SPEED	RH	F	21.0	Km∕h	
×	WHEEL	SPEED	LH	R	20.7	Km⁄h	
×	WHEEL	SPEED	LH	F	21.0	Km∕h	
×	WHEEL	SPEED	RH	B	20.9	Km∕ h	
							T
	FIX	PART	TO	r HELI	P LINE	REC	

SUDWAB9008L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

Right hand rear Wheel Sensor Inspection

- 1. Turn the ignition OFF.
- 2. Disconnect the right hand rear connector (C36).
- 3. Measure the resistance between terminal positive (+) and terminal negative (-) of the right hand rear wheel sensor (C36).
 - Specification: 830 ~ 2100 Ω (At 20 °C)
- 4. Is the resistance measured within specification?

YES

► After checking the HECU for contamination or damage, install a known-good HECU and check it good or not.

▶ Replace the HECU if the vehicle is normal condition and go to "Verification of Vehicle Repair" procedure.

NO

► Replace the sensor if the vehicle is normal after temporarily installing a known-good sensor and go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

SUDWAB9001L

004D J1939 Internal Error

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and failure memory circuit that memorizes any а malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

HECU continues to monitor the internal components, such as memory, input and output circuits. In case of an error during the operation of the control system, HECU determines whether it is a failure state and outputs a fail code.

ltem		Detecting Condition			Possible Cause
DTC Strategy	Signal monitoring			•	Replace ECU.
Enable Conditions	Ignition ON				
Threshold Value	When the HECU detect	Vhen the HECU detects malfunction in the control system			
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL	Yes			

MONITOR SCAN TOOL DATA

1. Connect scan tool to the self-diagnosis connector.

1.2. CURRENT DATA 08/22				
* ECU SUPPLY VOLTAGE	22.9	V		
× WHEEL SPEED RHF	1.8	Kn∕h		
× WHEEL SPEED LHR	1.8	Km/h		
× WHEEL SPEED LHF	1.8	Km⁄h		
× WHEEL SPEED RHR	1.8	Km∕h		
× DBR RELAY	OFF			
× ABS WARNING LAMP	OFF			
× BRAKE WARNING LAMP	OFF			
FIX PART TOT HELF	PLINE	REC		

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.

- 2. Turn the ignition ON.
- 3. Monitor the service data on the scan tool.

	1.2. CURRENT DA	ITA	01/2	22
				<u>.</u>
×	SENSOR VOLTAGE RHF	2.2	U	
×	SENSOR VOLTAGE LHR	2.2	V I	
×	SENSOR VOLTAGE LHF	2.2	U	
×	SENSOR VOLTAGE RHR	2.2	V	
×	ECU SUPPLY VOLTAGE	22.7	V	
×	DBR RELAY	OFF		
×	ABS WARNING LAMP	OFF		
×	BRAKE WARNING LAMP	OFF		
				T
	FIX PART TOT HELP	LINE	REC	

SUDWAB9007L

3. Has a problem been found?

YES

► Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

▶ There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9001L

004E J1939 Bus

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and failure memory circuit that memorizes any а malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

HECU continues to monitor the internal components, such as memory, input and output circuits. In case of an error during the operation of the control system, HECU determines whether it is a failure state and outputs a fail code.

ltem		Detecting Condition			Possible Cause
DTC Strategy	Signal monitoring			•	Replace ECU.
Enable Conditions	Ignition ON	nition ON			
Threshold Value	When the HECU detect	Vhen the HECU detects malfunction in the control system			
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL	Yes			

MONITOR SCAN TOOL DATA

1. Connect scan tool to the self-diagnosis connector.

1.2. CURRENT DATA 08/22				
			4	
×	ECU SUPPLY VOLTAGE	22.9	U	
×	WHEEL SPEED RHF	1.8	Kn∕h	
×	WHEEL SPEED LHR	1.8	Km/h	
×	WHEEL SPEED LHF	1.8	Km⁄h	
×	WHEEL SPEED RHR	1.8	Km∕h	
×	DBR RELAY	OFF		
×	ABS WARNING LAMP	OFF		
×	BRAKE WARNING LAMP	OFF		
				,
	FIX PART TOT HEL	P LINE	REC	

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.

- 2. Turn the ignition ON.
- 3. Monitor the service data on the scan tool.

	1.2. CURRENT DAT	A 01/:	22
×	SENSOR VOLTAGE RHF 2	.2 V	
×	SENSOR VOLTAGE LHR 2	.2 V	
×	SENSOR VOLTAGE LHF 2	.2 V	
×	SENSOR VOLTAGE RHR 2	.2 V	
×	ECU SUPPLY VOLTAGE 2	2.7 V	
×	DBR RELAY O	FF	
×	ABS WARNING LAMP O	FF	
×	BRAKE WARNING LAMP 0	FF	
			T
	FIX PART TOT HELP L	INE REC	

SUDWAB9007L

3. Has a problem been found?

YES

► Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

ABS

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

▶ There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

SUDWAB9001L

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and failure memory circuit that memorizes any а malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

HECU continues to monitor the internal components, such as memory, input and output circuits. In case of an error during the operation of the control system, HECU determines whether it is a failure state and outputs a fail code.

ltem		Detecting Condition			Possible Cause
DTC Strategy	Signal monitoring			•	Replace ECU.
Enable Conditions	Ignition ON				
Threshold Value	When the HECU detect	Vhen the HECU detects malfunction in the control system			
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL	Yes			

MONITOR SCAN TOOL DATA

1. Connect scan tool to the self-diagnosis connector.

1.2. CURRENT DATA 08/22				
× ECU SUPPLY VOLTAGE	22.9	U		
× WHEEL SPEED RHF	1.8	Km∕h		
× WHEEL SPEED LHR	1.8	Km/h		
× WHEEL SPEED LHF	1.8	Km⁄h		
× WHEEL SPEED RHR	1.8	Km⁄h		
× DBR RELAY	OFF			
× ABS WARNING LAMP	OFF			
× BRAKE WARNING LAMP	OFF			
		. ▼		
FIX PART TOT HELP	LINE	REC		

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.

- 2. Turn the ignition ON.
- 3. Monitor the service data on the scan tool.

	1.2. CURRENT DATA 01	/22
×	SENSOR VOLTAGE RHF 2.2 V	
×	SENSOR VOLTAGE LHR 2.2 V	
×	SENSOR VOLTAGE LHF 2.2 V	
×	SENSOR VOLTAGE RHR 2.2 V	
×	ECU SUPPLY VOLTAGE 22.7 V	
×	DBR RELAY OFF	
×	ABS WARNING LAMP OFF	
×	BRAKE WARNING LAMP OFF	
		T
	FIX PART TOT HELP LINE REC	

SUDWAB9007L

3. Has a problem been found?

YES

► Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

▶ There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

0050 Inlet Valve(Right Hand Front) Actuation Time Unplausible

COMPONENT LOCATION

SUDWAB9002L

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and circuit that memorizes any а failure memory malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

HECU continues to monitor the internal components, such as memory, input and output circuits. In case of an error during the operation of the control system, HECU determines whether it is a failure state and outputs a fail code.

ltem		Detecting Condition			Possible Cause
DTC Strategy	Signal monitoring			•	Replace ECU.
Enable Conditions	Ignition ON	gnition ON			
Threshold Value	.When the HECU detects malfunction in the control system. Air gap : 0. $2\sim$ 1.7 mm				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL	Yes			

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.

ON

YES

procedure.

NO

3. Select the data "Actuation test".

DUAL DI SPLAY							
	CURRENT DATA						
×	× INPUT VALVE RHF OFF						
×	* OUTPUT VALVE RHI				OFF		_
×	I NPU?	r valve	LHF		OFF		
×	Ουτρι	JT VALVI	E LHF		OFF		T
		A	CTUAT	ION TES	ST		
]	INLET	VALVE I	BIGHT	-HAND B	FRONT		
	1 SI	ECONDS		SOUNI) CHECK		
1	KEY.ON / VEH.STOP ENG. STOP						
	STRT		FIX	LINE			

Fig1) Right hand front inlet valve Actuation test at IG

▶ There may be a transient trouble due to defective valve or a past trouble which did not erase the

▶ And go to "Verification of Vehicle Repair"

4. Check the right hand front inlet valve for operation when activating the actuator.

■ Specification: Normal if the activating sound is heard.

	DUAL I	ISPLAY	
	CURREN	IT DATA	
× INPUT VA	LVE RHF	ON	
× OUTPUT V	ALVE RHF	OFF	
× INPUT VA	LVE LHF	OFF	-
× OUTPUT VI	ALVE LHF	OFF	T
5 0	ACTUATI	ON TEST	
INLET VAL	JE RIGHT-	HAND FRONT	
1 SECON	DS	SOUND CHECK	
KEY.ON Z	JEH. STOP	ENG. STOP	
STRT	FIX	LINE	

SUDWAB9044L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

- Repair as necessary and then go to "Verification of
- ► Go to "Component Inspection" procedure.

memory of HECU after having repair.

5. Does the valve activate normally?

Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

SUDWAB9048L

0051 Inlet Valve(Left Hand Rear) Actuation Time Unplausible

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and memory circuit that memorizes any а failure malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

HECU continues to monitor the internal components, such as memory, input and output circuits. In case of an error during the operation of the control system, HECU determines whether it is a failure state and outputs a fail code.

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring				Replace ECU.
Enable Conditions	Ignition ON				
Threshold Value	When the HECU detects malfunction in the control system. Air gap : 0.2 ${\sim}1.7~\text{mm}$				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL	Yes			

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test".

DUAL DI SPLAY						
CURI	RENT DATA					
× INPUT VALVE RHI	R OFF 🔺					
× OUTPUT VALVE R	IR OFF					
× INPUT VALVE LHR OFF						
× OUTPUT VALVE LI	HR OFF V					
ACTUA	ACTUATION TEST					
INLET VALVE LEFT	(-HAND REAR					
1 SECONDS SOUND CHECK						
KEY.ON ∕ VEH.STOP ENG. STOP						
STRT F12	K LINE					

Fig1) Left hand rear inlet valve Actuation test at IG

▶ There may be a transient trouble due to defective valve or a past trouble which did not erase the

▶ And go to "Verification of Vehicle Repair"

5. Does the valve activate normally?

memory of HECU after having repair.

4. Check the left hand rear inlet valve for operation when activating the actuator.

■ Specification: Normal if the activating sound is heard.

DUAL DISPLAY					
	CU	RREN	T DATA		
×	INPUT VALVE R	HR	(OFF	
×	× OUTPUT VALVE RHR OFF				
× INPUT VALVE LHR ON					
* OUTPUT VALVE LHR OFF				OFF	T
	ACT	UATI	ON TEST		
Ι	NLET VALVE LE	FT-H	AND REAL	R	
	1 SECONDS		SOUND	CHECK	
KEY.ON / VEH.STOP ENG. STOP					
	STRT	IX	LINE		

SUDWAB9045L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and then go to "Verification of

NO

procedure.

ON

YES

► Go to "Component Inspection" procedure.

Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

SUDWAB9049L

0052 Inlet Valve(Left Hand Front) Actuation Time Unplausible

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and memory circuit that memorizes any а failure malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

HECU continues to monitor the internal components, such as memory, input and output circuits. In case of an error during the operation of the control system, HECU determines whether it is a failure state and outputs a fail code.

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring				Replace ECU.
Enable Conditions	Ignition ON				
Threshold Value	When the HECU detects malfunction in the control system. Air gap : 0.2 ${\sim}1.7~\text{mm}$				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL Yes				

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test".

DUAL DISPLAY					
	CURRE	NT DATA			
× INPUT	VALVE RHF	OFF			
× OUTPU	T VALVE RHF	OFF			
× INPUT	VALVE LHF	OFF			
× OUTPU	T VALVE LHF	OFF	•		
	ACTUAT	ION TEST	·		
INLET	VALVE LEFT-	HAND FRONT			
1 SECONDS SOUND CHECK					
KEY.ON ∕ VEH.STOP ENG. STOP					
STRT	FIX	LINE			

Fig1) Left hand front inlet valve Actuation test at IG

▶ There may be a transient trouble due to defective valve or a past trouble which did not erase the

▶ And go to "Verification of Vehicle Repair"

5. Does the valve activate normally?

memory of HECU after having repair.

4. Check the left hand front inlet valve for operation when activating the actuator.

■ Specification: Normal if the activating sound is heard.

DUAL DISPLAY						
		CURREN	IT DATA			
×	INPUT VALV	E RHF		OFF		
×	OUTPUT VAL	VE RHF		OFF		
×	INPUT VALV	E LHF		ON		
* OUTPUT VALVE LHF			OFF	•		
	ACTUATION TEST					
]	INLET VALVE	LEFT-H	IAND FR	ONT		
1 SECONDS SOUND CHECK						
KEY.ON ∕ VEH.STOP ENG. STOP						
	STRT	FIX	LINE			

SUDWAB9046L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

Repair as necessary and then go to "Verification of

procedure.

ON

YES

► Go to "Component Inspection" procedure.
Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

SUDWAB9050L

0053 Inlet Valve(Right Hand Rear) Actuation Time Unplausible

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and failure memory circuit that memorizes any а malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

HECU continues to monitor the internal components, such as memory, input and output circuits. In case of an error during the operation of the control system, HECU determines whether it is a failure state and outputs a fail code.

DTC DETECTING CONDITION

ltem		Detecting Condition			Possible Cause
DTC Strategy	Signal monitoring			•	Replace ECU.
Enable Conditions	Ignition ON	Ignition ON			
Threshold Value	When the HECU detects malfunction in the control system. Air gap : 0.2 ${\sim}1.7~\text{mm}$				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL	Yes			

MONITOR SCAN TOOL DATA

- 1. Connect the scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.
- 3. Select the data "Actuation test".

DUAL DI SPLAY					
CURE	RENT DATA				
× INPUT VALVE RHI	R OFF 🔺				
× OUTPUT VALVE RI	IR OFF				
× INPUT VALVE LHE	R OFF 📕				
× OUTPUT VALVE LI	IR OFF 🔻				
ACTUATION TEST					
INLET VALVE RIGHT-HAND REAR					
1 SECONDS SOUND CHECK					
KEY.ON / VEH.STOP ENG. STOP					
STRT F1>	K LINE				

4. Check the right hand rear inlet valve for operation when activating the actuator.

■ Specification: Normal if the activating sound is heard.

	DUAL DISPLAY				
	CI	URREN	IT DATA		
×	INPUT VALVE	RHR	ON		
×	OUTPUT VALVE	RHR	OFF		
×	INPUT VALVE	LHR	OFF		
×	OUTPUT VALVE	LHR	OFF	Ŧ	
	ACTUATION TEST				
]	INLET VALVE RIGHT-HAND REAR				
	1 SECONDS SOUND CHECK				
KEY.ON ∕ VEH.STOP ENG. STOP					
	STRT	FIX	LINE		

SUDWAB9022L

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

▶ Repair as necessary and then go to "Verification of

- Fig1) Right hand rear inlet valve Actuation test at IG ON
- 5. Does the valve activate normally?

YES

▶ There may be a transient trouble due to defective valve or a past trouble which did not erase the memory of HECU after having repair.

And go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Component Inspection" procedure.

Vehicle Repair" procedure.

NO

▶ Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

0054 Pole Wheel Right Hand Front(Cyclic Failure)

COMPONENT LOCATION

SUDWAB9002L

GENERAL DESCRIPTION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

DTC DESCRIPTION

HECU continues to monitor the input signal from the wheel sensor. If the ABS control state changes abnormally when the sensor output voltage becomes low because the air gap in the front right wheel sensor is too big, HECU determines it as a failure state and outputs a fail code.

DTC DE	TECTING	CONDITION

ltem	Detecting Condition				Possible Cause		
DTC Strategy	Signal monitoring			• (Check air gap.		
Enable Conditions	Ignition ON				Check bearing play		
Threshold Value	Vehicle speed > 5.0 kp	h. Air gap : 0.2~1.7 mm			out.		
Diagnosis Time	Below 1,000 ms			•	Check tone ring fo		
Fail Safe	Fuel Cut	No	ABS function disa-		damage.		
	Fuel Limit	Yes	bled for concerned wheel				
	MIL	Yes					

|--|

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.
- 3. Drive the vehicle straight at a constant speed in the normal road surface.

	1.2. CURRENT	DATA	0 8/22
×	SENSOR VOLTAGE RHF	4.2	V
×	SENSOR VOLTAGE LHR	0.6	V I
×	SENSOR VOLTAGE LHF	0.6	V 🖕
×	SENSOR VOLTAGE RHR	1.2	V –
×	WHEEL SPEED RHF	10.6	Km/h
×	WHEEL SPEED LHR	10.6	Km/h
×	WHEEL SPEED LHF	10.8	Km∕h
×	WHEEL SPEED RHR	10.6	Kn∕h
			T
	FIX PART TOT HELP	LINE	REC

5. Is the data measured within specification?

YES

▶ There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Terminal & Connector Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

 Monitor the data "Wheel speed RHF" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

		1.	2 . (CURRENT	DATA	08/2	22
							•
×	SENSO	R VOLI	'AGE	RHF	0.8	U	
×	SENSO	R VOLI	AGE	LHR	4.7	V	
×	SENSO	R VOLI	'AGE	LHF	0.0	U	
×	SENSO	R VOLI	AGE	RHR	0.7	V	_
×	WHEEL	SPEE) RH	F	21.0	Km∕h	
×	WHEEL	SPEEI) LH	R	20.7	Km∕h	
×	WHEEL	SPEEI) LH	F	21.0	Km∕h	
×	WHEEL	SPEEI) RH	R	20.9	Km∕h	
							Ŧ
	FIX	PART	TO	r Heli	P LINE	REC	

SUDWAB9008L

Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

Sensor Air Gap Inspection

- 1. Turn the ignition OFF.
- 2. Check the air gap between right hand front tone wheel and wheel sensor with a thickness gauge.
 - Specification: 0.2~1.7 mm
- 3. Is the value measured within specification?

YES

Go to next procedure.

NO

▶ Repair it after checking wheel sensor installation condition and go to "Verification of Vehicle Repair" procedure.

▶ Repair or replace it after checking the condition of rotor and wheel bearing and go to "Verification of Vehicle Repair" procedure.

Check Number of Teeth on Tone Ring

- 1. Turn the ignition OFF.
- 2. Check the number of teeth on right hand front tone ring.
- 3. Is the number of teeth normal?

YES

► Go to "Verification of Vehicle Repair" procedure.

NO

- ▶ Repair it or replace with known-good one and check the condition of vehicle.
- ► If normal, replace with new one. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

SUDWAB9048L

0055 Pole Wheel Left Hand Rear(Cyclic Failure)

COMPONENT LOCATION

GENERAL DESCRIPTION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

DTC DESCRIPTION

HECU continues to monitor the input signal from the wheel sensor. If the ABS control state changes abnormally when the sensor output voltage becomes low because the air gap in the rear left wheel sensor is too big, HECU determines it as a failure state and outputs a fail code.

|--|

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring			•	Check air gap.Check bearing play and tone ring run
Enable Conditions	Ignition ON	N			
Threshold Value	Vehicle speed > 5.0 kpl	h. Air gap : 0.2∼1.7 mm			out.
Diagnosis Time	Below 1,000 ms			•	Check tone ring fo
Fail Safe	Fuel Cut	No	ABS function disa-	-	uamage.
	Fuel Limit	Yes	bled for concerned		
	MIL Yes				

Air gap	0.2 ~ 1.7 mm

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.
- 3. Drive the vehicle straight at a constant speed in the normal road surface.

	1.2. CURRENT	DATA	0 8/22
×	SENSOR VOLTAGE RHF	4.2	V
×	SENSOR VOLTAGE LHR	0.6	V I
×	SENSOR VOLTAGE LHF	0.6	V 🖕
×	SENSOR VOLTAGE RHR	1.2	V –
×	WHEEL SPEED RHF	10.6	Km/h
×	WHEEL SPEED LHR	10.6	Km/h
×	WHEEL SPEED LHF	10.8	Km∕h
×	WHEEL SPEED RHR	10.6	Kn∕h
			T
	FIX PART TOT HELP	LINE	REC

5. Is the data measured within specification?

YES

▶ There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

▶ Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

 Go to "Terminal & Connector Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

 Monitor the data "Wheel speed LHR" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

		1	. Z.	CURREN'	I DATA	08/3	22
×	SENSO:	R VOL	ľAGE	RHF	0.8	U U	
×	SENSO:	R VOL	ſAGE	LHR	4.7	v	
×	SENSO:	R VOL	FAGE	LHF	0.0	Ų	
×	SENSO:	R VOL	ſAGE	RHR	0.7	v	
×	WHEEL	SPEE	D RH	F	21.0	Km∕h	
×	WHEEL	SPEE	D LH	R	20.7	Km⁄h	
×	WHEEL	SPEE	D LH	F	21.0	Km∕h	
×	WHEEL	SPEE	D RH	R	20.9	Km∕h	
							Ŧ
	FIX	PART	ТО	T HE	LP LINE	REC	

SUDWAB9008L

Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

Sensor Air Gap Inspection

- 1. Turn the ignition OFF.
- 2. Check the air gap between left hand rear tone wheel and wheel sensor with a thickness gauge.
 - Specification: 0.2~1.7 mm
- 3. Is the value measured within specification?

YES

Go to next procedure.

NO

▶ Repair it after checking wheel sensor installation condition and go to "Verification of Vehicle Repair" procedure.

▶ Repair or replace it after checking the condition of rotor and wheel bearing and go to "Verification of Vehicle Repair" procedure.

Check Number of Teeth on Tone Ring

- 1. Turn the ignition OFF.
- 2. Check the number of teeth on left hand rear tone ring.
- 3. Is the number of teeth normal?

YES

► Go to "Verification of Vehicle Repair" procedure.

NO

- ▶ Repair it or replace with known-good one and check the condition of vehicle.
- ► If normal, replace with new one. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

SUDWAB9049L

0056 Pole Wheel Left Hand Front(Cyclic Failure)

COMPONENT LOCATION

GENERAL DESCRIPTION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

DTC DESCRIPTION

HECU continues to monitor the input signal from the wheel sensor. If the ABS control state changes abnormally when the sensor output voltage becomes low because the air gap in the front left wheel sensor is too big, HECU determines it as a failure state and outputs a fail code.

DTC DETECTING CONDITION	1
-------------------------	---

ltem			Possible Cause		
DTC Strategy	Signal monitoring	•	Check air gap.		
Enable Conditions	Ignition ON	•	Check bearing play		
Threshold Value	Vehicle speed > 5.0 kpl		out. Check tone ring for		
Diagnosis Time	Below 1,000 ms	•			
Fail Safe	Fuel Cut	No	ABS function disa-		uanage.
	Fuel Limit	Yes	bled for concerned		
	MIL	Yes			

	Air gap	0.2 ~ 1.7 mm
--	---------	--------------

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.
- 3. Drive the vehicle straight at a constant speed in the normal road surface.

	1.2. CURRENT	DATA	0 8/22
×	SENSOR VOLTAGE RHF	4.2	V
×	SENSOR VOLTAGE LHR	0.6	V I
×	SENSOR VOLTAGE LHF	0.6	V 🖕
×	SENSOR VOLTAGE RHR	1.2	V –
×	WHEEL SPEED RHF	10.6	Km/h
×	WHEEL SPEED LHR	10.6	Km/h
×	WHEEL SPEED LHF	10.8	Km∕h
×	WHEEL SPEED RHR	10.6	Kn∕h
			T
	FIX PART TOT HELP	LINE	REC

5. Is the data measured within specification?

YES

▶ There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

▶ Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Terminal & Connector Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

4. Monitor the data "Wheel speed LHF" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

		1.	.Z. (CURRENT	DATA	08/2	22
×	SENSO	R VOLI	FAGE	RHF	0.8	U I	
×	SENSO	R VOLI	"AGE	LHR	4.7	V I	
×	SENSO	R VOLI	'AGE	LHF	0.0	U U	
×	SENSO	R VOLI	FAGE	RHR	0.7	V	_
×	WHEEL	SPEE	D RH	F	21.0	Km∕h	
×	WHEEL	SPEEI) LH	R	20.7	Km∕h	
×	WHEEL	SPEEI) LH	F	21.0	Km∕h	
×	WHEEL	SPEEI) RH	B	20.9	Km∕ h	
							Ŧ
	FIX	PART	TO	T HEL	P LINE	REC	

SUDWAB9008L

▶ Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

Sensor Air Gap Inspection

- 1. Turn the ignition OFF.
- 2. Check the air gap between left hand front tone wheel and wheel sensor with a thickness gauge.
 - Specification: 0.2~1.7mm
- 3. Is the value measured within specification?

YES

Go to next procedure.

NO

▶ Repair it after checking wheel sensor installation condition and go to "Verification of Vehicle Repair" procedure.

▶ Repair or replace it after checking the condition of rotor and wheel bearing and go to "Verification of Vehicle Repair" procedure.

Check Number of Teeth on Tone Ring

- 1. Turn the ignition OFF.
- 2. Check the number of teeth on left hand front tone ring.
- 3. Is the number of teeth normal?

YES

► Go to "Verification of Vehicle Repair" procedure.

NO

- ▶ Repair it or replace with known-good one and check the condition of vehicle.
- ► If normal, replace with new one. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

SUDWAB9050L

0057 Pole Wheel Right Hand Rear(Cyclic Failure)

COMPONENT LOCATION

GENERAL DESCRIPTION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

DTC DESCRIPTION

HECU continues to monitor the input signal from the wheel sensor. If the ABS control state changes abnormally when the sensor output voltage becomes low because the air gap in the Rear right wheel sensor is too big, HECU determines it as a failure state and outputs a fail code.

|--|

ltem			Possible Cause				
DTC Strategy	Signal monitoring	•	Check air gap. Check bearing play and tone ring run out.				
Enable Conditions	Ignition ON						
Threshold Value	Vehicle speed > 5.0 kpl						
Diagnosis Time	Below 1,000 ms	•	Check tone ring for				
Fail Safe	Fuel Cut	No	ABS function disa-	uamage.] `	damage.
	Fuel Limit	Yes	bled for concerned				
	MIL	Yes					

Air gap	0.2 ~ 1.7 mm

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.
- 3. Drive the vehicle straight at a constant speed in the normal road surface.

	1.2. CURRENT	DATA	0 8/22
×	SENSOR VOLTAGE RHF	4.2	V
×	SENSOR VOLTAGE LHR	0.6	V I
×	SENSOR VOLTAGE LHF	0.6	V 🖕
×	SENSOR VOLTAGE RHR	1.2	V –
×	WHEEL SPEED RHF	10.6	Km/h
×	WHEEL SPEED LHR	10.6	Km/h
×	WHEEL SPEED LHF	10.8	Km∕h
×	WHEEL SPEED RHR	10.6	Kn∕h
			T
	FIX PART TOT HELP	LINE	REC

5. Is the data measured within specification?

YES

▶ There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

▶ Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

Go to "Terminal & Connector Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

 Monitor the data "Wheel speed RHR" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

	1.2. CURRENT I	DATA	08/22
×	SENSOR VOLTAGE RHF	0.8	U
×	SENSOR VOLTAGE LHR	4.7	V
×	SENSOR VOLTAGE LHF	0.0	V 📕
×	SENSOR VOLTAGE RHR	0.7	V
×	WHEEL SPEED RHF	21.0	Km∕h
×	WHEEL SPEED LHR	20.7	Km⁄h
×	WHEEL SPEED LHF	21.0	Km∕h
×	WHEEL SPEED RHR	20.9	Km∕ h
			T
	FIX PART TOT HELP	LINE	REC

SUDWAB9008L

Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

Sensor Air Gap Inspection

- 1. Turn the ignition OFF.
- 2. Check the air gap between right hand rear tone wheel and wheel sensor with a thickness gauge.
 - Specification: 0.2~1.7mm
- 3. Is the value measured within specification?

YES

Go to next procedure.

NO

▶ Repair it after checking wheel sensor installation condition and go to "Verification of Vehicle Repair" procedure.

▶ Repair or replace it after checking the condition of rotor and wheel bearing and go to "Verification of Vehicle Repair" procedure.

Check Number of Teeth on Tone Ring

- 1. Turn the ignition OFF.
- 2. Check the number of teeth on right hand rear tone ring.
- 3. Is the number of teeth normal?

YES

► Go to "Verification of Vehicle Repair" procedure.

NO

- ► Repair it or replace with known-good one and check the condition of vehicle.
- ► If normal, replace with new one. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

SUDWAB9001L

0058 Clamp Transistor Failure

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and failure memory circuit that memorizes any а malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

HECU continues to monitor the internal components, such as memory, input and output circuits. In case of an error during the operation of the control system, HECU determines whether it is a failure state and outputs a fail code.

DTC DETECTING CONDITION

ltem			Possible Cause		
DTC Strategy	Signal monitoring	•	Replace ECU.		
Enable Conditions	Ignition ON				
Threshold Value	When the HECU detect				
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL	Yes			

MONITOR SCAN TOOL DATA

- 1. Connect scan tool to the self-diagnosis connector.
- 2. Turn the ignition ON.

		1.2	. CUR	RENT 🗄	DATA	0 87	22		
×	ECU SUP	PLY V	OLTAG	Е	22.9	U		×	SENS
×	WHEEL SI	PEED	RHF		1.8	Kn∕h		×	SENS
×	WHEEL SI	PEED	LHR		1.8	Km/h		×	SENS
×	WHEEL SI	PEED	LHF		1.8	Km∕h		×	SENS
×	WHEEL SI	PEED	RHR		1.8	Km∕h		×	ECU :
×	DBR REL	AY			OFF			×	DBR 1
×	ABS WAR	NING	Lamp		OFF			×	ABS (
×	BRAKE W	ARNIN	ig lam	P	OFF			×	BRAK
							T		
	FIX P	ART	тот	HELP	LINE	REC			FIX

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.

3. Monitor the service data on the scan tool.

		1.2	Z. (URRI	ENT	DATA	01/	22
×	SENSOR	VOLT	AGE	RHF		2.2	Ų	
×	SENSOR	VOLT	ήGE	LHR		2.2	V	
×	SENSOR	VOLT	AGE	LHF		2.2	U	
×	SENSOR	VOLT	AGE	RHR		2.2	V	
×	ECU SUI	PPLY (JOLI	(AGE		22.7	V	
×	DBR REI	LAY				OFF		
×	ABS WAI	RNI NG	Lat	1P		OFF		
×	BRAKE I	VARNII	NG I	amp		OFF		
								T
	FIX 1	PART	TO	[]	IELP	LINE	REC	

SUDWAB9007L

- 3. Has a problem been found? YES
 - ► Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

ABS

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

YES

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

▶ There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

SUDWAB9001L

0059 Pull Up Down Failure

COMPONENT LOCATION

GENERAL DESCRIPTION

The Antilock Brake System (ABS) prevents the skid phenomenon that may occurs during a sudden brake while the vehicle is driving or when there is snow or water on the road. By preventing the wheels from sticking or skidding on the road while the brake is applied, ABS maintains the directional stability of the vehicle, secures the steer ability, provides the maximum braking power so as to reduce the braking distance and to pursue the overall safety of the driver and passengers. As the main device to perform ABS' braking function, HECU consists of an input amplifier circuit that processes the input signal, an ABS control and SAFETY circuit that calculates the control and performs FAIL SAFE, an output circuit that drives the pressure control valve, a voltage adjustment circuit that regulates the voltage, and failure memory circuit that memorizes any а malfunctioning. In case of a system malfunctioning, the warning light is turned on, and at the same time, the power to the pressure control valve is cut off, and the operation of ABS is stopped.

DTC DESCRIPTION

HECU continues to monitor the internal components, such as memory, input and output circuits. In case of an error during the operation of the control system, HECU determines whether it is a failure state and outputs a fail code.

DTC DETECTING CONDITION

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring			•	Replace ECU.
Enable Conditions	Ignition ON	Ignition ON			
Threshold Value	When the HECU detect	s malfunction in the cont	rol system		
Diagnosis Time	Below 1,000 ms				
Fail Safe	Fuel Cut	No	ABS disabled		
	Fuel Limit	Yes			
	MIL	Yes			

MONITOR SCAN TOOL DATA

1. Connect scan tool to the self-diagnosis connector.

1.2. CURRENT	DATA	08/22
× ECU SUPPLY VOLTAGE	22.9	U
× WHEEL SPEED RHF	1.8	Km∕h
× WHEEL SPEED LHR	1.8	Km/h
× WHEEL SPEED LHF	1.8	Km⁄h
× WHEEL SPEED RHR	1.8	Km⁄h
× DBR RELAY	OFF	
× ABS WARNING LAMP	OFF	
× BRAKE WARNING LAMP	OFF	
		. ▼
FIX PART TOT HELP	LINE	REC

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.

- 2. Turn the ignition ON.
- 3. Monitor the service data on the scan tool.

	1.2.	CURRENT	DATA	01/2	22
					<u>.</u>
🗶 SEN	SOR VOLTAG	SE RHF	2.2	U	
× SEN	SOR VOLTAG	GE LHR	2.2	V	
× sen	SOR VOLTAG	SE LHF	2.2	U	
🗶 sen	SOR VOLTAG	SE RHR	2.2	V	
🔀 🗵 🗧	SUPPLY VO	DLTAGE	22.7	V	
× DBR	RELAY		OFF		
× ABS	WARNING I	.amp	OFF		
× BRA	KE WARNING	G LAMP	OFF		
					T
FIX	PART I	OT HEL	P LINE	REC	

SUDWAB9007L

3. Has a problem been found?

YES

► Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

- 1. Start the engine.
- 2. Drive the vehicle with approx. 15km/h or higher.
- 3. Turn the ignition ON. Leave the engine OFF.
- 4. Connect the scan tool and check the diagnostic trouble codes by using self-diagnosis.
- 5. Using the scan tool erase the diagnostic trouble codes stored in the HECU.
- 6. Check that there are any diagnostic trouble codes by using self-diagnosis with the scan tool.
- 7. Are any diagnostic trouble codes (DTCs) detected?

► Check that the DTCs have disappeared after replacing with a known-good HECU. If the problem has solved, we may guess the HECU is problem. Replace the HECU and go to "Verification of Vehicle Repair" procedure.

NO

► There may be a defective valve component or a transient trouble due to a past trouble which did not erase the memory of HECU after having repair. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

► Go to the applicable DTC procedure.

NO

005A Sensor Right Hand Front(Signal Disturbed)

COMPONENT LOCATION

SUDWAB9002L

GENERAL DESCRIPTION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

DTC DESCRIPTION

If the sensor output voltage becomes too low because of larger air gap on the front right wheel sensor or the ABS control status changes abnormally due to too much vibration or noise in the brake, HECU determines it as a failure and outputs a fail code.

Item			Possible Cause		
DTC Strategy	Signal monitoring			•	Check air gap.
Enable Conditions	Ignition ON				Check bearing play
Threshold Value	Vehicle speed > 5.0 kpl		out.		
Diagnosis Time	Below 1,000 ms	•	Check tone ring for		
Fail Safe	Fuel Cut	No	ABS function temp-].	Brake chatter.
	Fuel Limit	Yes	orarily disabled for concerned wheel.		
	MIL	Yes			

|--|

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.
- 3. Drive the vehicle straight at a constant speed in the normal road surface.

	1.2. CURRENT	DATA	0 8/22
×	SENSOR VOLTAGE RHF	4.2	V
×	SENSOR VOLTAGE LHR	0.6	V I
×	SENSOR VOLTAGE LHF	0.6	V 🖕
×	SENSOR VOLTAGE RHR	1.2	V –
×	WHEEL SPEED RHF	10.6	Km/h
×	WHEEL SPEED LHR	10.6	Km/h
×	WHEEL SPEED LHF	10.8	Km∕h
×	WHEEL SPEED RHR	10.6	Kn∕h
			T
	FIX PART TOT HELP	LINE	REC

5. Is the data measured within specification?

YES

▶ There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

 Go to "Terminal & Connector Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

4. Monitor the data "Wheel speed RHF" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

		1.2. (URRENT	DATA	08/22
×	SENSOR U	OLTAGE	RHF	0.8	V
×	SENSOR V	OLTAGE	LHR	4.7	V
×	SENSOR U	OLTAGE	LHF	0.0	V 🖕
×	SENSOR VO	OLTAGE	RHR	0.7	V
×	WHEEL SP	EED RHI	F	21.0	Km∕h
×	WHEEL SPI	EED LHI	B	20.7	Km∕h
×	WHEEL SPI	EED LHI	F	21.0	Km∕h
×	WHEEL SPI	EED RHJ	B	20.9	Km∕h
	FIX PA	RT TO	r HELI	PLINE	REC

SUDWAB9008L

Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

Sensor Air Gap Inspection

- 1. Turn the ignition OFF.
- 2. Check the air gap between right hand front tone wheel and wheel sensor with a thickness gauge.
 - Specification: 0.2~1.7 mm
- 3. Is the value measured within specification?

YES

Go to next procedure.

NO

▶ Repair it after checking wheel sensor installation condition and go to "Verification of Vehicle Repair" procedure.

▶ Repair or replace it after checking the condition of rotor and wheel bearing and go to "Verification of Vehicle Repair" procedure.

Check Number of Teeth on Tone Ring

- 1. Turn the ignition OFF.
- 2. Check the number of teeth on right hand front tone ring.
- 3. Is the number of teeth normal?

YES

► Go to "Verification of Vehicle Repair" procedure.

NO

▶ Repair it or replace with known-good one and check the condition of vehicle.

▶ If normal, replace with new one. And go to "Verification of Vehicle Repair" procedure.

Check Brake Chatter

- 1. Turn the ignition OFF.
- 2. Check the pad and drum of the right hand front brake.
- 3. Is the condition of the brake normal?

YES

► Go to "Verification of Vehicle Repair" procedure.

NO

▶ Repair it or replace with known-good one and check the condition of the vehicle.

► If normal, replace with new one. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

SUDWAB9048L

005B Sensor Left Hand Rear(Signal Disturbed)

COMPONENT LOCATION

GENERAL DESCRIPTION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

DTC DESCRIPTION

If the sensor output voltage becomes too low because of larger air gap on the rear left wheel sensor or the ABS control status changes abnormally due to too much vibration or noise in the brake, HECU determines it as a failure and outputs a fail code.

DTC DETECTING CONDITION

ltem			Possible Cause		
DTC Strategy	Signal monitoring			•	Check air gap.
Enable Conditions	Ignition ON			•	Check bearing play
Threshold Value	Vehicle speed > 5.0 kph				out.
Diagnosis Time	Below 1,000 ms	•	Check tone ring for		
Fail Safe	Fuel Cut	No	ABS function temp-	•	Brake chatter.
	Fuel Limit	Yes	orarily disabled for concerned wheel.		
	MIL	Yes			

Air gap	0.2 ~ 1.7 mm

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.
- 3. Drive the vehicle straight at a constant speed in the normal road surface.

	1.2. CURRENT	DATA	0 8/22
×	SENSOR VOLTAGE RHF	4.2	V
×	SENSOR VOLTAGE LHR	0.6	V I
×	SENSOR VOLTAGE LHF	0.6	V 🖕
×	SENSOR VOLTAGE RHR	1.2	V –
×	WHEEL SPEED RHF	10.6	Km/h
×	WHEEL SPEED LHR	10.6	Km/h
×	WHEEL SPEED LHF	10.8	Km∕h
×	WHEEL SPEED RHR	10.6	Kn∕h
			T
	FIX PART TOT HELP	LINE	REC

5. Is the data measured within specification?

YES

▶ There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

▶ Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

 Go to "Terminal & Connector Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

 Monitor the data "Wheel speed LHR" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

		1.2	. CL	JRRENT	DATA	08/2	22
×	SENSOR	VOLTA	GE F	RHF	0.8	Ų	
×	SENSOR	VOLTA	GE L	HR	4.7	V	
×	SENSOR	VOLTA	GE L	HF	0.0	Ų	
×	SENSOR	VOLTA	GE F	RHR	0.7	Ų	
×	WHEEL S	SPEED	RHF		21.0	Km∕h	
×	WHEEL S	PEED	LHR		20.7	Km/h	
×	WHEEL S	PEED	LHF		21.0	Km∕h	
×	WHEEL S	PEED	RHR		20.9	Km∕h	
							Ŧ
	FIX P	ART	тот	HELI	PLINE	REC	

SUDWAB9008L

Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

Sensor Air Gap Inspection

- 1. Turn the ignition OFF.
- 2. Check the air gap between left hand rear tone wheel and wheel sensor with a thickness gauge.
 - Specification: 0.2~1.7mm
- 3. Is the value measured within specification?

YES

Go to next procedure.

NO

▶ Repair it after checking wheel sensor installation condition and go to "Verification of Vehicle Repair" procedure.

▶ Repair or replace it after checking the condition of rotor and wheel bearing and go to "Verification of Vehicle Repair" procedure.

Check Number of Teeth on Tone Ring

- 1. Turn the ignition OFF.
- 2. Check the number of teeth on left hand rear tone ring.
- 3. Is the number of teeth normal?

YES

► Go to "Verification of Vehicle Repair" procedure.

NO

▶ Repair it or replace with known-good one and check the condition of vehicle.

▶ If normal, replace with new one. And go to "Verification of Vehicle Repair" procedure.

Check Brake Chatter

- 1. Turn the ignition OFF.
- 2. Check the pad and drum of the left hand rear brake.
- 3. Is the condition of the brake normal?

YES

► Go to "Verification of Vehicle Repair" procedure.

NO

- ▶ Repair it or replace with known-good one and check the condition of the vehicle.
- ▶ If normal, replace with new one. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

SUDWAB9049L

005C Sensor Left Hand Front(Signal Disturbed)

COMPONENT LOCATION

GENERAL DESCRIPTION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

DTC DESCRIPTION

If the sensor output voltage becomes too low because of larger air gap on the front left wheel sensor or the ABS control status changes abnormally due to too much vibration or noise in the brake, HECU determines it as a failure and outputs a fail code.

DTC DETECTING CONDITION

ltem	Detecting Condition				Possible Cause
DTC Strategy Signal monitoring					Check air gap.
Enable Conditions	Ignition ON	•	Check bearing play		
Threshold Value	Vehicle speed > 5.0 kph				out.
Diagnosis Time Below 1,000 ms					Check tone ring fo
Fail Safe	Fuel Cut	No	ABS function temp-	p- • Brake chatte	Brake chatter.
	Fuel Limit	Yes	orarily disabled for		
	MIL	Yes			

Air gap	0.2 ~ 1.7 mm

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.
- 3. Drive the vehicle straight at a constant speed in the normal road surface.

	1.2. CURRENT	DATA	0 8/22
×	SENSOR VOLTAGE RHF	4.2	V
×	SENSOR VOLTAGE LHR	0.6	V I
×	SENSOR VOLTAGE LHF	0.6	V 🖕
×	SENSOR VOLTAGE RHR	1.2	V –
×	WHEEL SPEED RHF	10.6	Km/h
×	WHEEL SPEED LHR	10.6	Km/h
×	WHEEL SPEED LHF	10.8	Km∕h
×	WHEEL SPEED RHR	10.6	Kn∕h
			T
	FIX PART TOT HELI	P LINE	REC

5. Is the data measured within specification?

YES

▶ There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

▶ Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

Go to "Terminal & Connector Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

4. Monitor the data "Wheel speed LHF" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

			1.2.	CUI	RRENT	DATA	08/	22
×	SENSO	R VO	LTAG	E R	ŀF	0.8	Ų	
×	SENSO	R VO	LTAG	Е L	-IR	4.7	V	
×	SENSO	R VO	LTAG	EL	ŀF	0.0	Ų	
×	SENSO	R VO	LTAG	E R	-IR	0.7	Ų	
×	WHEEL	SPE	ED H	RHF		21.0) Km/h	
×	WHEEL	SPE	ED L	HR		20.7	' Km∕h	
×	WHEEL	SPE	ED L	.HF		21.0) Km/h	
×	WHEEL	SPE	ED F	RHB		20.9) Km⁄h	
								T
	FIX	PAR	T T	'OT	HELI	P LINE	REC	

SUDWAB9008L

Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

Sensor Air Gap Inspection

- 1. Turn the ignition OFF.
- 2. Check the air gap between left hand front tone wheel and wheel sensor with a thickness gauge.
 - Specification: 0.2~1.7 mm
- 3. Is the value measured within specification?

YES

Go to next procedure.

NO

▶ Repair it after checking wheel sensor installation condition and go to "Verification of Vehicle Repair" procedure.

▶ Repair or replace it after checking the condition of rotor and wheel bearing and go to "Verification of Vehicle Repair" procedure.

Check Number of Teeth on Tone Ring

- 1. Turn the ignition OFF.
- 2. Check the number of teeth on left hand front tone ring.
- 3. Is the number of teeth normal?

YES

► Go to "Verification of Vehicle Repair" procedure.

NO

- ▶ Repair it or replace with known-good one and check the condition of vehicle.
- ▶ If normal, replace with new one. And go to "Verification of Vehicle Repair" procedure.

Check Brake Chatter

- 1. Turn the ignition OFF.
- 2. Check the pad and drum of the left hand front brake.
- 3. Is the condition of the brake normal?

YES

► Go to "Verification of Vehicle Repair" procedure.

NO

- ▶ Repair it or replace with known-good one and check the condition of the vehicle.
- ▶ If normal, replace with new one. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO

SUDWAB9050L

005D Sensor Right Hand Rear(Signal Disturbed)

COMPONENT LOCATION

GENERAL DESCRIPTION

The wheel sensor is crucial for HECU to calculate the speed of the vehicle and determine whether the wheel is in 'Lock' mode or not. For example, in case of a front-wheel drive vehicle, the signal of the rear wheel speed is used as a reference value for the speed of the vehicle. If there occurs the difference in speed between the front and rear wheels, ABS control is performed. The wheel sensor creates a sine curve based on the magnetic field created by the permanent magnet inside the sensor when the tone wheel rotates. The frequency and the AC voltage change by a certain ratio depending on the wheel speed, and HECU determines the speed of the vehicle by calculating the frequency of the signal.

DTC DESCRIPTION

If the sensor output voltage becomes too low because of larger air gap on the rear right wheel sensor or the ABS control status changes abnormally due to too much vibration or noise in the brake, HECU determines it as a failure and outputs a fail code.

DTC DETECTING CONDITION

ltem	Detecting Condition				Possible Cause
DTC Strategy	Signal monitoring	•	Check air gap.		
Enable Conditions	nable Conditions Ignition ON				
Threshold Value	.Vehicle speed > 5.0 kph				out.
Diagnosis Time Below 1,000 ms					Check tone ring for
Fail Safe	Fuel Cut No • ABS function temp orarily disabled for concerned wheel	No	ABS function temp-	-].	Brake chatter.
		orarily disabled for	r		
	MIL	Yes	concerned wheel.		

Air gap 0.2 ~ 1.7 mm

- 1. Start the engine.
- 2. Connect the scan tool to the self-diagnosis connector. Select the service data.
- 3. Drive the vehicle straight at a constant speed in the normal road surface.

	1.2. CURRENT	DATA	0 8/22
×	SENSOR VOLTAGE RHF	4.2	V
×	SENSOR VOLTAGE LHR	0.6	V I
×	SENSOR VOLTAGE LHF	0.6	V 🖕
×	SENSOR VOLTAGE RHR	1.2	V –
×	WHEEL SPEED RHF	10.6	Km/h
×	WHEEL SPEED LHR	10.6	Km/h
×	WHEEL SPEED LHF	10.8	Km∕h
×	WHEEL SPEED RHR	10.6	Kn∕h
			T
	FIX PART TOT HELP	LINE	REC

5. Is the data measured within specification?

YES

▶ There may be the poor contact of wheel sensor circuit or a past trouble which did not erase the memory of HECU after having repaired. Totally check the connector for looseness, poor contact, bent, corrosion, contamination, deformation, or damage.

▶ Repair or replace it if necessary and go to "Verification of Vehicle Repair" procedure.

NO

Go to "Terminal & Connector Inspection" procedure.

TERMINAL & CONNECTOR INSPECTION

1. Many malfunctions in the electrical system are caused by poor harness, and terminals.

Faults can also be caused by interference from other electrical systems, and mechanical or chemical damage.

- 2. Thoroughly check connectors for looseness, poor connection, bent, corrosion, contamination, deterioration, or damage.
- 3. Has a problem been found?

YES

 Monitor the data "Wheel speed RHR" parameter on the scan tool.

■ Specification: Normal if its speed is nearly in accordance with the speed in the gauge.

		1.2. (CURRENT	DATA	08/22	2
						6
×	SENSOR V	OLTAGE	RHF	0.8	U	
×	SENSOR V	OLTAGE	LHR	4.7	V	
×	SENSOR U	OLTAGE	LHF	0.0	V .	
×	SENSOR V	OLTAGE	RHR	0.7	V	
×	WHEEL SP	EED RHI	F	21.0	Km∕h	
×	WHEEL SP	EED LHI	R	20.7	Km⁄h	
×	WHEEL SP	EED LHI	F	21.0	Km∕h	
×	WHEEL SP	EED RHJ	B	20.9	Km∕h	
						ŗ
	FIX PA	RT TO	r Helj	P LINE	REC	

SUDWAB9008L

Repair as necessary and then go to "Verification of Vehicle Repair" procedure.

NO

► Go to "Signal Circuit Inspection" procedure.

COMPONENT INSPECTION

Sensor Air Gap Inspection

- 1. Turn the ignition OFF.
- 2. Check the air gap between right hand rear tone wheel and wheel sensor with a thickness gauge.
 - Specification: 0.2~1.7 mm
- 3. Is the value measured within specification?

YES

Go to next procedure.

NO

▶ Repair it after checking wheel sensor installation condition and go to "Verification of Vehicle Repair" procedure.

▶ Repair or replace it after checking the condition of rotor and wheel bearing and go to "Verification of Vehicle Repair" procedure.

Check Number of Teeth on Tone Ring

- 1. Turn the ignition OFF.
- 2. Check the number of teeth on right hand rear tone ring.
- 3. Is the number of teeth normal?

YES

► Go to "Verification of Vehicle Repair" procedure.

NO

▶ Repair it or replace with known-good one and check the condition of vehicle.

▶ If normal, replace with new one. And go to "Verification of Vehicle Repair" procedure.

Check Brake Chatter

- 1. Turn the ignition OFF.
- 2. Check the pad and drum of the right hand rear brake.
- 3. Is the condition of the brake normal?

YES

► Go to "Verification of Vehicle Repair" procedure.

NO

- ▶ Repair it or replace with known-good one and check the condition of the vehicle.
- ▶ If normal, replace with new one. And go to "Verification of Vehicle Repair" procedure.

VERIFICATION OF VEHICLE REPAIR

After a repair, it is essential to verify that the fault has been corrected.

- 1. Connect the scan tool and perform the self diagnosis. Check diagnostic trouble codes.
- 2. Clear the diagnostic trouble codes (DTCs) stored in the ECM by using the scan tool.
- 3. Drive the vehicle under conditions noted in failure records.
- 4. Check that there are any DTCs by performing self diagnosis with the scan tool.
- 5. Did the DTC return?

YES

• Go to the applicable DTC procedure.

NO